977 resultados para ASYMPTOTIC SYMMETRIES
Resumo:
Motivated by the recently proposed Kerr/CFT correspondence, we investigate the holographic dual of the extremal and non-extremal rotating linear dilaton black hole in Einstein-Maxwell-Dilaton-Axion Gravity. For the case of extremal black hole, by imposing the appropriate boundary condition at spatial infinity of the near horizon extremal geometry, the Virasoro algebra of conserved charges associated with the asymptotic symmetry group is obtained. It is shown that the microscopic entropy of the dual conformal field given by Cardy formula exactly agrees with Bekenstein-Hawking entropy of extremal black hole. Then, by rewriting the wave equation of massless scalar field with sufficient low energy as the SLL(2, R) x SLR(2, R) Casimir operator, we find the hidden conformal symmetry of the non-extremal linear dilaton black hole, which implies that the non-extremal rotating linear dilaton black hole is holographically dual to a two dimensional conformal field theory with the non-zero left and right temperatures. Furthermore, it is shown that the entropy of non-extremal black hole can be reproduced by using Cardy formula.
Resumo:
We extend the recently proposed Kerr/CFT correspondence to examine the dual conformal field theory of four-dimensional Kaluza-Klein black hole in Einstein-Maxwell-Dilaton theory. For the extremal Kaluza-Klein black hole, the central charge and temperature of the dual conformal field are calculated following the approach of Guica, Hartman, Song and Strominger. Meanwhile, we show that the microscopic entropy given by the Cardy formula agrees with Bekenstein-Hawking entropy of extremal Kaluza-Klein black hole. For the non-extremal case, by studying the near-region wave equation of a neutral massless scalar field, we investigate the hidden conformal symmetry of Kaluza-Klein black hole, and find the left and right temperatures of the dual conformal field theory. Furthermore, we find that the entropy of non-extremal Kaluza-Klein black hole is reproduced by Cardy formula. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We consider massless higher spin gauge theories with both electric and magnetic sources, with a special emphasis on the spin two case. We write the equations of motion at the linear level (with conserved external sources) and introduce Dirac strings so as to derive the equations from a variational principle. We then derive a quantization condition that generalizes the familiar Dirac quantization condition, and which involves the conserved charges associated with the asymptotic symmetries for higher spins. Next we discuss briefly how the result extends to the nonlinear theory. This is done in the context of gravitation, where the Taub-NUT solution provides the exact solution of the field equations with both types of sources. We rederive, in analogy with electromagnetism, the quantization condition from the quantization of the angular momentum. We also observe that the Taub-NUT metric is asymptotically flat at spatial infinity in the sense of Regge and Teitelboim (including their parity conditions). It follows, in particular, that one can consistently consider in the variational principle configurations with different electric and magnetic masses. © 2006 The American Physical Society.
Resumo:
We derive the node structure of the radial functions which are solutions of the Dirac equation with scalar S and vector V confining central potentials, in the conditions of exact spin or pseudospin symmetry, i.e., when one has V=±S+C, where C is a constant. We show that the node structure for exact spin symmetry is the same as the one for central potentials which go to zero at infinity but for exact pseudospin symmetry the structure is reversed. We obtain the important result that it is possible to have positive energy bound solutions in exact pseudospin symmetry conditions for confining potentials of any shape, including naturally those used in hadron physics, from nuclear to quark models. Since this does not occur for potentials going to zero at large distances, which are used in nuclear relativistic mean-field potentials or in the atomic nucleus, this shows the decisive importance of the asymptotic behavior of the scalar and vector central potentials on the onset of pseudospin symmetry and on the node structure of the radial functions. Finally, we show that these results are still valid for negative energy bound solutions for antifermions. © 2013 American Physical Society.
Resumo:
We consider a class of initial data sets (Σ,h,K) for the Einstein constraint equations which we define to be generalized Brill (GB) data. This class of data is simply connected, U(1)²-invariant, maximal, and four-dimensional with two asymptotic ends. We study the properties of GB data and in particular the topology of Σ. The GB initial data sets have applications in geometric inequalities in general relativity. We construct a mass functional M for GB initial data sets and we show:(i) the mass of any GB data is greater than or equals M, (ii) it is a non-negative functional for a broad subclass of GB data, (iii) it evaluates to the ADM mass of reduced t − φi symmetric data set, (iv) its critical points are stationary U(1)²-invariant vacuum solutions to the Einstein equations. Then we use this mass functional and prove two geometric inequalities: (1) a positive mass theorem for subclass of GB initial data which includes Myers-Perry black holes, (2) a class of local mass-angular momenta inequalities for U(1)²-invariant black holes. Finally, we construct a one-parameter family of initial data sets which we show can be seen as small deformations of the extreme Myers- Perry black hole which preserve the horizon geometry and angular momenta but have strictly greater energy.
Resumo:
A model for drug diffusion from a spherical polymeric drug delivery device is considered. The model contains two key features. The first is that solvent diffuses into the polymer, which then transitions from a glassy to a rubbery state. The interface between the two states of polymer is modelled as a moving boundary, whose speed is governed by a kinetic law; the same moving boundary problem arises in the one-phase limit of a Stefan problem with kinetic undercooling. The second feature is that drug diffuses only through the rubbery region, with a nonlinear diffusion coefficient that depends on the concentration of solvent. We analyse the model using both formal asymptotics and numerical computation, the latter by applying a front-fixing scheme with a finite volume method. Previous results are extended and comparisons are made with linear models that work well under certain parameter regimes. Finally, a model for a multi-layered drug delivery device is suggested, which allows for more flexible control of drug release.
Resumo:
One of the nice properties of kernel classifiers such as SVMs is that they often produce sparse solutions. However, the decision functions of these classifiers cannot always be used to estimate the conditional probability of the class label. We investigate the relationship between these two properties and show that these are intimately related: sparseness does not occur when the conditional probabilities can be unambiguously estimated. We consider a family of convex loss functions and derive sharp asymptotic results for the fraction of data that becomes support vectors. This enables us to characterize the exact trade-off between sparseness and the ability to estimate conditional probabilities for these loss functions.
Resumo:
This brief paper provides a novel derivation of the known asymptotic values of three-dimensional (3D) added mass and damping of marine structures in waves. The derivation is based on the properties of the convolution terms in the Cummins's Equation as derived by Ogilvie. The new derivation is simple and no approximations or series expansions are made. The results follow directly from the relative degree and low-frequency asymptotic properties of the rational representation of the convolution terms in the frequency domain. As an application, the extrapolation of damping values at high frequencies for the computation of retardation functions is also discussed.
Resumo:
Following the derivation of amplitude equations through a new two-time-scale method [O'Malley, R. E., Jr. & Kirkinis, E (2010) A combined renormalization group-multiple scale method for singularly perturbed problems. Stud. Appl. Math. 124, 383-410], we show that a multi-scale method may often be preferable for solving singularly perturbed problems than the method of matched asymptotic expansions. We illustrate this approach with 10 singularly perturbed ordinary and partial differential equations. © 2011 Cambridge University Press.
Resumo:
In this paper we introduce a new technique to obtain the slow-motion dynamics in nonequilibrium and singularly perturbed problems characterized by multiple scales. Our method is based on a straightforward asymptotic reduction of the order of the governing differential equation and leads to amplitude equations that describe the slowly-varying envelope variation of a uniformly valid asymptotic expansion. This may constitute a simpler and in certain cases a more general approach toward the derivation of asymptotic expansions, compared to other mainstream methods such as the method of Multiple Scales or Matched Asymptotic expansions because of its relation with the Renormalization Group. We illustrate our method with a number of singularly perturbed problems for ordinary and partial differential equations and recover certain results from the literature as special cases. © 2010 - IOS Press and the authors. All rights reserved.
Resumo:
The quick detection of an abrupt unknown change in the conditional distribution of a dependent stochastic process has numerous applications. In this paper, we pose a minimax robust quickest change detection problem for cases where there is uncertainty about the post-change conditional distribution. Our minimax robust formulation is based on the popular Lorden criteria of optimal quickest change detection. Under a condition on the set of possible post-change distributions, we show that the widely known cumulative sum (CUSUM) rule is asymptotically minimax robust under our Lorden minimax robust formulation as a false alarm constraint becomes more strict. We also establish general asymptotic bounds on the detection delay of misspecified CUSUM rules (i.e. CUSUM rules that are designed with post- change distributions that differ from those of the observed sequence). We exploit these bounds to compare the delay performance of asymptotically minimax robust, asymptotically optimal, and other misspecified CUSUM rules. In simulation examples, we illustrate that asymptotically minimax robust CUSUM rules can provide better detection delay performance at greatly reduced computation effort compared to competing generalised likelihood ratio procedures.