950 resultados para ASSISTED HYDROTHERMAL PROCESS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this communication, we investigate the effect of different surfactants: cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and polyvinylpyrrolidone (PVP-K40) on the growth process of zinc molybdate (beta-ZnMoO4) microcrystals synthesized under hydrothermal conditions at 140 degrees C for 8 h. These microcrystals were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and photoluminescence (PL) measurements. XRD patterns proved that these crystals are monophasic and present a wolframite-type monoclinic structure. FE-SEM images revealed that the surfactants modified the crystal shapes, suggesting the occurrence of distinct crystal growth processes. The CTAB cationic surfactant promotes the hindrance of small nuclei that leads to the formation of rectangle-like crystals, SDS anionic surfactant induces a growth of irregular hexagons with several porous due to considerable size effect of counter-ions on the crystal facets, PVP-K40 non-ionic surfactant allows a reduction in size and thickness of plate-like crystals, while without surfactants have the formation of irregular plate-like crystals. Finally, the PL properties of beta-ZnMoO4 microcrystals were explained by means of different shape/size, surface defects and order-disorder into lattice. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Europium doped hydroxyapatite (Eu:HAp) nanosized particles with multiform morphologies have been successfully prepared via a simple microemulsion-mediated process assisted with microwave heating. The physicochemical properties of the samples were well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectra, and the kinetic decays, respectively. The results reveal that the obtained Eu:HAp particles are well assigned to the hexagonal lattice structure of the hydroxyapatite phase. Additionally, it is found that samples exhibit uniform morphologies which can be controlled by altering the pH values. Furthermore, the samples show the characteristic D-5(0)-F-7(1-4) emission lines of Eu3+ excited by UV radiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, we report the synthesis and characterization of NaNbO3 particles obtained by microwave-assisted hydrothermal method from Nb2O5 and NaOH. The synthesis was made at different periods at 180 °C and 300W. The crystallization of NaNbO3 structures produced Na2Nb2O6.H2O in the intermediate phase with fiber-like morphology, and this is associated with the synthesis time. Pure orthorhombic NaNbO3 with cube-like morphology originates after synthesizing for 240 minutes. To verify the remnant polarization of particles, films were obtained by electrophoresis process and sintered at 800°C for 10 minutes in a microwave furnace. The films characterization indicated that films of niobate with fiber-like morphology present remaining polarization, and the morphology of cubes did not show remaining polarization. Considering these results, it can be concluded that the morphology implemented ferroelectric property of NaNbO3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report herein for the first time a facile synthesis method to obtain SrTi1-xFexO3 nanocubes by means by a microwave-assisted hydrothermal (MAH) method at 140 degrees C. The effect of iron addition on the structural and morphological properties of SrTiO3 was investigated. X-ray diffraction measurements show that all STFO samples present a cubic perovskite structure. X-ray absorption spectroscopy at Fe absorption K-edge measurements revealed that iron ions are in a mixed Fe2+/Fe3+ oxidation state and preferentially occupy the Ti4+-site. UV-visible spectra reveal a reduction in the optical gap (E-gap) of STFO samples as the amount of iron is increased. An analysis of the data obtained by field emission scanning electron microscopy points out that the nanoparticles present a cubic morphology independently of iron content. According to high-resolution transmission electron microscopy results, these nanocubes are formed by a self-assembly process of small primary nanocrystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A low temperature polyol process, based on glycolaldehyde mediated partial reduction of FeCl3 center dot 6H(2)O at 120 degrees C in the presence of sodium acetate as an alkali source and 2,2'-(ethylenedioxy)-bis-(ethylamine) as an electrostatic stabilizer has been used for the gram-scale preparation of biocompatible, water-dispersible, amine functionalized magnetite nanoparticles (MNPs) with an average diameter of 6 +/- 0.75 nm. With a reasonably high magnetization (37.8 e.m.u.) and amine groups on the outer surface of the nanoparticles, we demonstrated the magnetic separation and concentration implications of these ultrasmall particles in immunoassay. MRI studies indicated that these nanoparticles had the desired relaxivity for T-2 contrast enhancement in vivo. In vitro biocompatibility, cell uptake and MR imaging studies established that these nanoparticles were safe in clinical dosages and by virtue of their ultrasmall sizes and positively charged surfaces could be easily internalized by cancer cells. All these positive attributes make these functional nanoparticles a promising platform for further in vitro and in vivo evaluations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The novel hexagon SnO2 nanosheets are successfully synthesized in ethanol/water solution by hydrothermal process. The samples are characterized by X-ray diffraction (XRD), infrared ray (IR) and transmission electron microscopy (TEM). By changing the reaction conditions, the size and the morphology can be controlled. Comparison experiments show that when the temperature increased from 140 degrees C to 180 degrees C, the edge length of the hexagon nanoparticles increases from 300-450 nm to 700-900 nm. On the other hand, by adjusting the ratios of water to ethanol from 2 to 0.5, SnO2 nanoparticles with different morphologies of triangle and sphere are obtained. When the concentration of NaOH is increased from 0.15 M to 0.30 M, a hollow ring structure can be obtained. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high quality pure hydroxy-sodalite zeolite membrane was successfully synthesized on an alpha-Al2O3 support by a novel microwave-assisted hydrothermal synthesis (MARS) method. Influence of synthesis conditions, such as synthesis time, synthesis procedure, etc., on the formation of hydroxy-sodalite zeolite membrane by MAHS method was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and gas permeation measurements. The synthesis of hydroxy-sodalite zeolite membrane by MAHS method only needed 45 min and synthesis was more than 8 times faster than by the conventional hydrothermal synthesis (CHS) method. A pure hydroxy-sodalite zeolite membrane was easily synthesized by MAHS method, while a zeolite membrane, which consisted of NaX zeolite, NaA zeolite and hydroxy-sodalite zeolite, was usually synthesized by CHS method. The effect of preparation procedures had a dramatic impact on the formation of hydroxy-sodalite zeolite membrane and a single-stage synthesis procedure produced a pure hydroxy-sodalite zeolite membrane. The pure hydroxy-sodalite zeolite membrane synthesized by MARS method was found to be well inter-grown and the thickness of the membrane was 6-7 mum. Gas permeation results showed that the hydrogen/n-butane permselectivity of the hydroxy-sodalite zeolite membrane was larger than 1000. (C) 2004 Elsevier Inc. All rights reserved.