4 resultados para ASM3


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A existência de estações de tratamentos de águas residuais (ETAR) é, nos dias de hoje, fundamental na medida em que permite, reduzir a poluição ambiental associada às águas e, também, a reutilização da água tratada para diversos fins. A constante necessidade de cumprir os limites de descargas nos meios recetores conduziu a um melhoramento nas técnicas e processos de tratamento de efluentes, nomeadamente, nos processos biológicos. O processo por lamas ativadas é um processo amplamente utilizado para a remoção de poluentes orgânicos presentes nas águas residuais, pelo que um estudo mais intensivo sobre estes tratamentos resultou na publicação de uma série de conceitos e pressupostos, através de modelos numéricos. A modelação numérica de processos de tratamento de águas residuais e a utilização de ferramentas de simulação numérica têm sido largamente utilizadas, a nível mundial, por exemplo em investigação, desenvolvimento de processos, atividade de consultoria e igualmente por entidades reguladoras, na medida em que os auxiliam no planeamento, dimensionamento e análise do comportamento de infraestruturas de tratamento. No presente trabalho, recorreu-se ao software de simulação GPS-X (versão 6.0) para implementar o esquema de tratamento da ETAR de Beirolas. O objetivo deste trabalho é verificar a aplicabilidade de modelos numéricos na simulação de unidades de tratamento de efluentes e avaliar a resposta dos diferentes modelos, assim como a influência na alteração de características das águas afluentes no comportamento dos modelos. Os resultados obtidos permitiram concluir que os modelos numéricos podem ser utilizados para prever a resposta dos sistemas biológicos e as suas perturbações. Conclui-se ainda que o comportamento, dos modelos estudados (ASM1, ASM2d, ASM3 e mantis), é semelhante, contudo deve-se referir que devido à complexidade do modelo e a falta de informação experimental sobre as características do efluente, não permitiram efetuar uma completa caracterização e calibração do caso de estudo, e toda a informação disponível sobre as características físico-químicas da água foram baseadas em estimativas de concentrações de carências de oxigénio e sólidos suspensos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Työn kirjallisuusosassa on tarkasteltu rasvaistenjätevesien puhdistuksessa käytettyjä perinteisiä käsittelymenetelmiä ja ultrasuodatusta. Perinteisiä rasvaisten jätevesien käsittelymenetelmiä ovat muun muassalaskeutus, flotaatio, hydrosykloni, pisarakoon kasvattaminen suodatus sekä biologinen käsittely. Lisäksi happohydrolyysia voidaan soveltaa edellä mainittujen menetelmien esikäsittelynä. Perinteisten puhdistusmenetelmien käyttöä rajoittavatniiden tehottomuus emulgoituneen ja liukoisen öljyn poistossa. Tämä sekä kiristyneet päästövaatimukset ja kalvotekniikan nopea kehittyminen ovat lisänneet kiinnostusta kalvotekniikkaan. Työn soveltavassa osassa on tarkasteltu rasvojen mahdollisesti aiheuttamia ongelmia Porvoon jalostamon kemiallisessa ja biologisessa puhdistuksessa. Rasvaisia jätevesiä muodostuu biodieselin valmistuksessa, jossa rasvoja käytetään syöttöaineena. Vertailtaessa jalostamon vesilaitoksen nykyisiä olosuhteita ja rasvojen käsittelyn vaatimia olosuhteita havaitaan, että optimiolosuhteet ovat melko lähellä toisiaan ja rasvaisten jätevesien mukana tulevat fosfori-, typpi- ja COD-kuormat melko pieniä. Suurimmat mahdolliset rasvojen aiheuttamat ongelmat syntyvät aktiivilietelaitoksella, jossa kevyt pinnalle nouseva rasva nostaa mukanaan lietettä. Rasvat ja rasvahapot myös lisäävät rihmamaisten bakteerien kasvua, joiden runsas esiintyminen aiheuttaa huonosti laskeutuvaa lietettä, eli paisuntalietettä. Rasvaisten vesien aiheuttamaa kuormitusta aktiivilieteprosessiin on tarkasteltu Activated sludge Model No. 3:n ja bio-P fosforin poisto moduuliin pohjautuvan Excel-taulukkolaskentamallin avulla. Pohjana työssä on käytetty Tuomo Hillin vuonna 2002 diplomityönä tekemää taulukkolaskentamallia. Työssä on esitelty kaikki mallin kannalta oleelliset yhtälöt ja parametrit. Tämän tutkimuksen perusteella mallin käytettävyyttä rajoittaa se, että sitä ei ole kalibroitu Porvoon jalostamolle. Kalibroimattomalla mallilla voidaan saada vain suuntaa antavia tuloksia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activated sludge basins (ASBs) are a key-step in wastewater treatment processes that are used to eliminate biodegradable pollution from the water discharged to the natural environment. Bacteria found in the activated sludge consume and assimilate nutrients such as carbon, nitrogen and phosphorous under specific environmental conditions. However, applying the appropriate agitation and aeration regimes to supply the environmental conditions to promote the growth of the bacteria is not easy. The agitation and aeration regimes that are applied to activated sludge basins have a strong influence on the efficacy of wastewater treatment processes. The major aims of agitation by submersible mixers are to improve the contact between biomass and wastewater and the prevention of biomass settling. They induce a horizontal flow in the oxidation ditch, which can be quantified by the mean horizontal velocity. Mean values of 0.3-0.35 m s-1 are recommended as a design criteria to ensure best conditions for mixing and aeration (Da Silva, 1994). To give circulation velocities of this order of magnitude, the positioning and types of mixers are chosen from the plant constructors' experience and the suppliers' data for the impellers. Some case studies of existing plants have shown that measured velocities were not in the range that was specified in the plant design. This illustrates that there is still a need for design and diagnosis approach to improve process reliability by eliminating or reducing the number of short circuits, dead zones, zones of inefficient mixing and poor aeration. The objective of the aeration is to facilitate the quick degradation of pollutants by bacterial growth. To achieve these objectives a wastewater treatment plant must be adequately aerated; thus resulting in 60-80% of all energetic consummation being dedicated to the aeration alone (Juspin and Vasel, 2000). An earlier study (Gillot et al., 1997) has illustrated the influence that hydrodynamics have on the aeration performance as measure by the oxygen transfer coefficient. Therefore, optimising the agitation and aeration systems can enhance the oxygen transfer coefficient and consequently reduce the operating costs of the wastewater treatment plant. It is critically important to correctly estimate the mass transfer coefficient as any errors could result in the simulations of biological activity not being physically representative. Therefore, the transfer process was rigorously examined in several different types of process equipment to determine the impact that different hydrodynamic regimes and liquid-side film transfer coefficients have on the gas phase and the mass transfer of oxygen. To model the biological activity occurring in ASBs, several generic biochemical reaction models have been developed to characterise different biochemical reaction processes that are known as Activated Sludge Models, ASM (Henze et al., 2000). The ASM1 protocol was selected to characterise the impact of aeration on the bacteria consuming and assimilating ammonia and nitrate in the wastewater. However, one drawback of ASM protocols is that the hydrodynamics are assumed to be uniform by the use of perfectly mixed, plug flow reactors or as a number of perfectly mixed reactors in series. This makes it very difficult to identify the influence of mixing and aeration on oxygen mass transfer and biological activity. Therefore, to account for the impact of local gas-liquid mixing regime on the biochemical activity Computational Fluid Dynamics (CFD) was used by applying the individual ASM1 reaction equations as the source terms to a number of scalar equations. Thus, the application of ASM1 to CFD (FLUENT) enabled the investigation of the oxygen transfer efficiency and the carbon & nitrogen biological removal in pilot (7.5 cubic metres) and plant scale (6000 cubic metres) ASBs. Both studies have been used to validate the effect that the hydrodynamic regime has on oxygen mass transfer (the circulation velocity and mass transfer coefficient) and the effect that this had on the biological activity on pollutants such as ammonia and nitrate (Cartland Glover et al., 2005). The work presented here is one part to of an overall approach for improving the understanding of ASBs and the impact that they have in terms of the hydraulic and biological performance on the overall wastewater treatment process. References CARTLAND GLOVER G., PRINTEMPS C., ESSEMIANI K., MEINHOLD J., (2005) Modelling of wastewater treatment plants ? How far shall we go with sophisticated modelling tools? 3rd IWA Leading-Edge Conference & Exhibition on Water and Wastewater Treatment Technologies, 6-8 June 2005, Sapporo, Japan DA SILVA G. (1994). Eléments d'optimisation du transfert d'oxygène par fines bulles et agitateur séparé en chenal d'oxydation. PhD Thesis. CEMAGREF Antony ? France. GILLOT S., DERONZIER G., HEDUIT A. (1997). Oxygen transfer under process conditions in an oxidation ditch equipped with fine bubble diffusers and slow speed mixers. WEFTEC, Chicago, USA. HENZE M., GUJER W., MINO T., van LOOSDRECHT M., (2000). Activated Sludge Models ASM1, ASM2, ASM2D and ASM3, Scientific and Technical Report No. 9. IWA Publishing, London, UK. JUSPIN H., VASEL J.-L. (2000). Influence of hydrodynamics on oxygen transfer in the activated sludge process. IWA, Paris - France.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015