932 resultados para ARYLAZONAPHTHOL DYES
Resumo:
Absorption and fluorescence spectroscopy, electrochemical techniques, and semiempirical calculations were employed to characterize the multiple complexation equilibria between two polymethine cyanine dyes (IR-786 and Indocyanine green-ICG, 5) and beta-cyclodextrin (beta-CD, L), as well as the chemical reactivity of the complexed and uncomplexed species against the oxidizing agents hypochlorite (HC) and hydrogen peroxide (HP). IR-786 dimerization is favored with the increase in beta-CD concentration in the form of (SL)(2) complexes. In the case of ICG, free dimers (D) and SL complexes are favored. Both IR-786 and ICG react and discolor in the presence of HC and HP. For IR-786, the reaction with HP and HC proceeds with observed rate constants of 10(-3) and 0.28 s(-1) and second-order rate constants (k(2)) of similar to 10(-3) and 10(4) M(-1) s(-1), respectively. The intermediate species observed in the bleaching reactions of IR-786 and ICG were shown, by cyclic voltammetry and VIS absorption, to result from one electron oxidation. IR-786 complexed with beta-CD is protected against bleaching in the presence of HP and HC by factors of 20 and 4, respectively. This protection was not observed in ICG complexes. Superdelocalizability profile of both dyes and frontier orbital analysis indicates that beta-CD does not protect ICG from oxidation by HP or HC, whereas the 2:2 IR-786/beta-Cd complex is able to avoid the oxidation of IR-786. We concluded that the decrease in the chemical reactivity of the dyes against oxidant agents in the presence of beta-CD is due to the formation of (SL)(2) complexes. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
This study evaluated the ecotoxicity of five dyes to freshwater organisms before and during their photo-Fenton degradation. EC50 (48h) of the five tested dyes ranged from of 6.9 to >1000mgL(-1) for Daphnia similis. In the chronic tests IC50 (72h) varied from 65 to >100mgL(-1) for Pseudokirchneriella subcapitata and IC50 (8 days) from 0.5 to 410mgL(-1) for Ceriodaphnia dubia. Toxicity tests revealed that although the applied treatment was effective for decolorization of the dye, the partial mineralization may be responsible for the presence of degradation products which can be either more toxic than the original dye, as is the case of Vat Green 3 and Reactive Black 5, lead to initially toxic products which may be further degraded to non toxic products (acid Orange 7 and Food Red 17), or generate non toxic products as in the case of Food Yellow 3. The results highlighted the importance of assessing both acute and chronic toxicity tests of treated sample before effluent discharge.
Resumo:
A saddle shaped tetracluster porphyrin species containing four [Ru(3)O(OAc)(6)(py)(2)](+) clusters coordinated to the N-pyridyl atoms of 5,10,15,20-tetra(3-pyridyl)porphyrin, H(2)(3-TCPyP), has been investigated in comparison with the planar tetra(4-pyridyl) porphyrin analogue H(2)(4-TCPyP). The steric effects from the bulky peripheral complexes play a critical role in the H(2)(3-TCPyP) species, determining a non-planar configuration around the porphyrin centre and precluding any significant pi-electronic coupling, in contrast with the less hindered H(2)(4-TCPyP) species. Both systems exhibit a photoelectrochemical response in the presence of nanocrystalline TiO(2) films, involving the porphyrin excitation around 450 nm. However, only in the H(2)(4-TCPyP) case do the cluster moieties also contribute to the photoinduced electron injection process at 670 nm, reflecting the relevance of the electronic coupling between the porphyrin centre and the peripheral complexes.
Resumo:
The concentration of hydrogen peroxide is an important parameter in the azo dyes decoloration process through the utilization of advanced oxidizing processes, particularly by oxidizing via UV/H2O2. It is pointed out that, from a specific concentration, the hydrogen peroxide works as a hydroxyl radical self-consumer and thus a decrease of the system`s oxidizing power happens. The determination of the process critical point (maximum amount of hydrogen peroxide to be added) was performed through a ""thorough mapping"" or discretization of the target region, founded on the maximization of an objective function objective (constant of reaction kinetics of pseudo-first order). The discretization of the operational region occurred through a feedforward backpropagation neural model. The neural model obtained presented remarkable coefficient of correlation between real and predicted values for the absorbance variable, above 0.98. In the present work, the neural model had, as phenomenological basis the Acid Brown 75 dye decoloration process. The hydrogen peroxide addition critical point, represented by a value of mass relation (F) between the hydrogen peroxide mass and the dye mass, was established in the interval 50 < F < 60. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Degradation of Disperse Orange 1, Disperse Red 1 and Disperse Red 13 dyes has been performed using electrochemical oxidation on Pt electrode, chemical chlorination and photoelectrochemical oxidation on Ti/TiO(2) thin film electrodes in NaCl or Na(2)SO(4) medium. 100% discoloration was obtained for all tested methods after 1 h of treatment. Faster color removal was obtained by photoelectrocatalytic oxidation in 0.1 mol L(-1) NaCl pH 4.0 under UV light and an applied potential of +1.0V (vs SCE reference electrode), which indicates also values around 60% of TOC removal. The conventional chlorination method and electrochemical oxidation on Pt electrode resulted in negligible reduction of TOC removal. All dyes showed positive mutagenic activity in the Salmonella/microsome assay with the strain TA98 in the absence and presence of S9 (exogenous metabolic activation). Nevertheless, there is complete reduction of the mutagenic activity after 1 h of photoelectrocatalytic oxidation, suggesting that this process would be good option to remove disperse azo dyes from aqueous media. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The use of azo dyes by different industries can cause direct and/or indirect effects oil human and environmental health due to the discharge of industrial effluents that contain these toxic compounds. Several studies have demonstrated the genotoxic effects of various azo dyes, but information on the DNA damage caused by Disperse Red 1 and Disperse Orange 1 is unavailable, although these dyes are used in dyeing processes in many countries. The aim of the present study was to evaluate the mutagenic activity of Disperse Red 1 and Disperse Orange 1 using the micronucleus (MN) assay in human lymphocytes and in HepG2 cells. In the lymphocyte assay. it was found that the number of MN induced by the lowest concentration of each dye (0.2 mu g/mL) was similar to that of the negative control. At the other concentrations, a dose response MN formation was observed up to 1.0 mu g/mL. At higher dose levels, the number of MN decreased. For the HepG2 cells the results were similar. With both dyes a dose dependent increase in the frequency of MN was detected. However for the HepG2, the threshold for this increase was 2.0 mu g/mL, while at higher doses a reduction in the MN number was observed. The proliferation index was also calculated in order to evaluate acute toxicity during the test. No differences were detected between the different concentrations tested and the negative control. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The treatment of textile effluents by the conventional method based on activated sludge followed by a chlorination step is not usually an effective method to remove azo dyes, and can generate products more mutagenic than the untreated dyes. The present work evaluated the efficiency of conventional chlorination to remove the genotoxicity/mutagenicity of the azo dyes Disperse Red 1, Disperse Orange 1, and Disperse Red 13 from aqueous solutions. The comet and micronucleus assays with HepG2 cells and the Salmonella mutagenicity assay were used. The degradation of the dye molecules after the same treatment was also evaluated, using ultraviolet and visible absorption spectrum measurements (UV-vis), high performance liquid chromatography coupled to a diode-array detector (HPLC-DAD), and total organic carbon removal (TOC) analysis. The comet assay showed that the three dyes studied induced damage in the DNA of the HepG2 cells in a dose-dependent manner. After chlorination, these dyes remained genotoxic, although with a lower damage index (DI). The micronucleus test showed that the mutagenic activity of the dyes investigated was completely removed by chlorination, under the conditions tested. The Salmonella assay showed that chlorination reduced the mutagenicity of all three dyes in strain YG1041, but increased the mutagenicity of Disperse Red 1 and Disperse Orange 1 in strain TA98. With respect to chemical analysis, all the solutions showed rapid discoloration and a reduction in the absorbance bands characteristic of the chromophore group of each dye. However, the TOC was not completely removed, showing that chlorination of these dyes is not efficient in mineralizing them. It was concluded that conventional chlorination should be used with caution for the treatment of aqueous samples contaminated with azo dyes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Purpose: To investigate the retinal biocompatibility of six novel vital dyes for chromovitrectomy. Methods: An amount of 0.05 mL of 0.5% and 0.05% light green (LG), fast green (FG), Evans blue (EB), brilliant blue (BriB), bromophenol blue (BroB), or indigo carmine (IC) was injected intravitreally in the right eye, whereas in the left eye balanced salt solution was applied for control in rabbits` eyes. Clinical examination, fluorescein angiography, histology with light microscopy, and transmission electron microscopy were performed after 1 and 7 days. Retinal cell layers were evaluated for morphologic alterations and number of cells. The electroretinographic changes were assessed at baseline, 24 hours and 7 days. Results: Fluorescein angiography disclosed hypofluorescent spots only in the 0.5% EB group. Light microscopy and transmission electron microscopy disclosed slight focal morphologic changes in eyes exposed to 0.05% IC, FG, BriB, similar to the control at 1 and 7 days. In the lower dose groups, EB, LG, and BroB caused substantial retinal alterations by light microscopy. At the higher dose, BroB and EB produced diffuse cellular edema and vacuolization within the ganglion cells, bipolar cells, and photoreceptors. FG and IC at 0.5% caused slight retinal alterations similar to balanced salt solution injection. LG at 0.5% caused diffuse vacuolization of bipolar cells after 1 and 7 days. Injection of 0.5% EB caused a significant decrease in neuroretinal cell counts in comparison to control eyes in the 7-day examination (P < 0.05). Electroretinography revealed intermittent prolonged latency and decreased amplitude in eyes injected with 0.5% EB, LG, BriB, and BroB, while at the lower dose, only LG and EB induced few functional changes. Conclusion: The progressive order of retinal biocompatibility, from safest to most toxic, was IC, FG, BriB, BroB, LG, EB.
Resumo:
Solubility measurements of quinizarin. (1,4-dihydroxyanthraquinone), disperse red 9 (1-(methylamino) anthraquinone), and disperse blue 14 (1,4-bis(methylamino)anthraquinone) in supercritical carbon dioxide (SC CO2) were carried out in a flow type apparatus, at a temperature range from (333.2 to 393.2) K and at pressures from (12.0 to 40.0) MPa. Mole fraction solubility of the three dyes decreases in the order quinizarin (2.9 x 10(-6) to 2.9.10(-4)), red 9 (1.4 x 10(-6) to 3.2 x 10(-4)), and blue 14 (7.8 x 10(-8) to 2.2 x 10(-5)). Four semiempirical density based models were used to correlatethe solubility of the dyes in the SC CO2. From the correlation results, the total heat of reaction, heat of vaporization plus the heat of solvation of the solute, were calculated and compared with the results presented in the literature. The solubilities of the three dyes were correlated also applying the Soave-Redlich-Kwong cubic equation of state (SRK CEoS) with classical mixing rules, and the physical properties required for the modeling were estimated and reported.
Resumo:
Synthetic dyes are xenobiotic compounds that are being increasingly used in several industries, with special emphasis in the paper, textile and leather industries. Over 100,000 commercial dyes exist today and more than 7 × 105 tons of dyestuff is produced annually, of which 1–1.5 × 105 tons is released into the wastewaters (Rai et al in Crit Rev Environ Sci Tecnhol 35:219–238, 2005). Among these, azo dyes, characterized by the presence of one or more azo groups (–N=N–), and anthraquinonic dyes represent the largest and most versatile groups.
Resumo:
Presented thesis at Faculdade de Ciências e Tecnologias, Universidade de Lisboa, to obtain the Master Degree in Conservation and Restoration of Textiles
Resumo:
Presented at Faculdade de Ciências e Tecnologias, Universidade de Lisboa, to obtain the Master Degree in Conservation and Restoration of Textiles
Resumo:
Mesoamerican cultures had a strong tradition of written and pictorial manuscripts, called the codices. In studies already performed it was found the use of Maya Blue, made from a mixture of indigo and a clay called palygorskite, forming an incredibly stable material where the dye is trapped inside the nanotubes of the clay, after heating. However, a bigger challenge lies in the study of the yellows used, for these civilizations might have used this clay-dye mixture to produce their yellow colorants. As a first step, it was possible to provide identification, by non-invasive methods, of two colorants (a flavonoid and a carotenoid). While the flavonoid absorbed between 368-379 nm, the carotenoid would absorb around 455 nm. A temperature study also conducted allowed to set 140ºC as the desirable temperature to heat the samples without degrading them. FT-IR, conventional Raman and SERS allowed us to understand the existence of a reaction between the dyes and the clays (palygorskite and kaolinite), however it is difficult to understand it in a molecular point of view. As a second step, five species of Mexican dyes were selected on the basis of historical sources. The Maya yellow samples were produced adapting the recipe proposed by Reyes-Valerio, supporting the yellow dyes extracted from the dried plants on the clays, with addition of water, and then heated at 140ºC. It was found that the addition of water in palygorskite would increase the pH, hence deprotonating the molecules having a clear negative effect in the color. A second recipe was developed, without the addition of water; however, it was found that the use of water based binders would still alter the color of the samples with palygorskite. In this case, kaolinite without heating yield better results as a Maya yellow hybrid. It was found that the Maya chemistry might not have been the same for all the colors. The Mesoamericans might have found that different dyes could work better to their desires if matched with different clays. It was noticeable that for a clear distinction between flavonoids and carotenoids the reflectance and emission studies suffice, but when clay is added, Raman techniques will perform better. For this reason, conventional Raman and SERS were employed in order to create a database for the Mesoamerican dyestuffs for a future identification.
Resumo:
Environmental pollution is one of the major and most important problems of the modern world. In order to fulfill the needs and demands of the overgrowing human population, developments in agriculture, medicine, energy sources, and all chemical industries are necessary (Ali 2010). Over the last century, the increased industrialization and continued population growth led to an augmented production of environmental pollutants that are released into air, water, and soil, with significant impact in the degradation of various ecosystems (Ali 2010, Khan et al. 2013).(...)
Resumo:
Raman spectroscopy has been applied to characterize fiber dyes and determine the discriminating ability of the method. Black, blue, and red acrylic, cotton, and wool samples were analyzed. Four excitation sources were used to obtain complementary responses in the case of fluorescent samples. Fibers that did not provide informative spectra using a given laser were usually detected using another wavelength. For any colored acrylic, the 633-nm laser did not provide Raman information. The 514-nm laser provided the highest discrimination for blue and black cotton, but half of the blue cottons produced noninformative spectra. The 830-nm laser exhibited the highest discrimination for red cotton. Both visible lasers provided the highest discrimination for black and blue wool, and NIR lasers produced remarkable separation for red and black wool. This study shows that the discriminating ability of Raman spectroscopy depends on the fiber type, color, and the laser wavelength.