987 resultados para ARTIFICIAL LESION FORMATION
Resumo:
In this paper a hydrodynamic approach is used to analyse carefully the flow field inChandler loop--the artificial thrombus formation. The results obtained show that near thelower meniscus where the thrombus is formed, there is a back flow accompanied with asecondary flow and its mainflow is toward the meniscus, thus providing a favourable condi-tion for corpuscle aggregation. Our finding is valuable for studying the mechanism ofthrombus formation in artificial organ and in vivo.
Resumo:
Malignant or benign tumors may be ablated with high‐intensity focused ultrasound (HIFU). This technique, known as focused ultrasound surgery (FUS), has been actively investigated for decades, but slow to be implemented and difficult to control due to lack of real‐time feedback during ablation. Two methods of imaging and monitoring HIFU lesions during formation were implemented simultaneously, in order to investigate the efficacy of each and to increase confidence in the detection of the lesion. The first, Acousto‐Optic Imaging (AOI) detects the increasing optical absorption and scattering in the lesion. The intensity of a diffuse optical field in illuminated tissue is mapped at the spatial resolution of an ultrasound focal spot, using the acousto‐optic effect. The second, Harmonic Motion Imaging (HMI), detects the changing stiffness in the lesion. The HIFU beam is modulated to force oscillatory motion in the tissue, and the amplitude of this motion, measured by ultrasound pulse‐echo techniques, is influenced by the stiffness. Experiments were performed on store‐bought chicken breast and freshly slaughtered bovine liver. The AOI results correlated with the onset and relative size of forming lesions much better than prior knowledge of the HIFU power and duration. For HMI, a significant artifact was discovered due to acoustic nonlinearity. The artifact was mitigated by adjusting the phase of the HIFU and imaging pulses. A more detailed model of the HMI process than previously published was made using finite element analysis. The model showed that the amplitude of harmonic motion was primarily affected by increases in acoustic attenuation and stiffness as the lesion formed and the interaction of these effects was complex and often counteracted each other. Further biological variability in tissue properties meant that changes in motion were masked by sample‐to‐sample variation. The HMI experiments predicted lesion formation in only about a quarter of the lesions made. In simultaneous AOI/HMI experiments it appeared that AOI was a more robust method for lesion detection.
Resumo:
Enteropathogenic Escherichia coli (EPEC) causes a characteristic histopathology in intestinal epithelial cells called the attaching and effacing lesion. Although the histopathological lesion is well described the bacterial factors responsible for it are poorly characterized. We have identified four EPEC chromosomal genes whose predicted protein sequences are similar to components of a recently described secretory pathway (type III) responsible for exporting proteins lacking a typical signal sequence. We have designated the genes sepA, sepB, sepC, and sepD (sep, for secretion of E. coli proteins). The predicted Sep polypeptides are similar to the Lcr (low calcium response) and Ysc (yersinia secretion) proteins of Yersinia species and the Mxi (membrane expression of invasion plasmid antigens) and Spa (surface presentation of antigens) regions of Shigella flexneri. Culture supernatants of EPEC strain E2348/69 contain several polypeptides ranging in size from 110 kDa to 19 kDa. Proteins of comparable size were recognized by human convalescent serum from a volunteer experimentally infected with strain E2348/69. A sepB mutant of EPEC secreted only the 110-kDa polypeptide and was defective in the formation of attaching and effacing lesions and protein-tyrosine phosphorylation in tissue culture cells. These phenotypes were restored upon complementation with a plasmid carrying an intact sepB gene. These data suggest that the EPEC Sep proteins are components of a type III secretory apparatus necessary for the export of virulence determinants.
Resumo:
This study evaluated the effect of titanium tetrafluoride (TiF4) formulations on enamel carious demineralization in situ. Thirteen subjects took part in this cross-over, split-mouth, double-blind study performed in three phases of 14 d each. In each subject, two sound and two predemineralized specimens of bovine enamel were worn intra-orally and plaque accumulation was allowed. One sound and one predemineralized specimen in each subject was treated once with sodium fluoride (NaF) varnish or solution (Treatment A); TiF4 varnish or solution (Treatment B); or placebo varnish or no treatment (Treatment C). The initially sound enamel specimens were exposed to severe cariogenic challenge (20% sucrose, eight times daily for 5 min each time), whereas the predemineralized specimens were not. Eleven subjects were able to finish all experimental phases. The enamel alterations were quantified by surface hardness and transversal microradiography. Demineralization of previously sound enamel was reduced by all test formulations except for the NaF solution, while both TiF4 formulations were as effective as NaF varnish. For the predemineralized specimens, enamel surface hardness was increased only by TiF4 formulations, while subsurface mineral remineralization could not be seen in any group. Within the experimental protocol, TiF4 was able to decrease enamel demineralization to a similar degree as NaF varnish under severe cariogenic challenges, while only TiF4 formulations remineralized the enamel surface.
Resumo:
Despite a plethora of in situ studies and clinical trials evaluating the efficacy of fluoridated dentifrices on caries control, in vitro pH cycling models are still broadly used because they mimic the dynamics of mineral loss and gain involved in caries formation. This paper critically reviews the current literature on existing pH-cycling models for the in vitro evaluation of the efficacy of fluoridated dentifrices for caries control, focusing on their strengths and limitations. A search was undertaken in the MEDLINE electronic journal database using the keywords "pH-cycling", "demineralization", "remineralization", "in vitro", "fluoride", "dentifrice". The primary outcome was the decrease of demineralization or the increase of remineralization as measured by different methods (e. g.: transverse microradiography) or tooth fluoride uptake. Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. One hundred and sixteen studies were included, of which 42 addressed specifically the comparison of dentifrices using different pH-cycling models. The other studies included meta-analysis or reviews, data about the effect of different fluoride sources on de-remineralization, different methods for analysis de-remineralization and chemical variables and characteristics of dental hard tissues that might have influence on de-remineralization processes. Generally, the studies presented ability to detect known results established by clinical trials, to demonstrate dose-related responses in the fluoride content of the dentifrices, and to provide repeatability and reproducibility between tests. In order to accomplish these features satisfactorily, it is mandatory to take into account the type of substrate and baseline artificial lesion, as well as the adequate response variables and statistical approaches to be used. This critical review of literature showed that the currently available pH-cycling models are appropriate to detect dose-response and pH-response of fluoride dentifrices, and to evaluate the impact of new active principles on the effect of fluoridated dentifrices, as well as their association with other anti-caries treatments.
Resumo:
Lesion formation on root surfaces of human posterior teeth was studied in acetate/lactate buffers with a background electrolyte composition based on plaque fluid analyses. Lesion depth after 28 days at 37 degrees C was measured in relation to: the presence or absence of cementum; the concentration of undissociated buffer; the presence or absence of magnesium ions at plaque fluid concentration. Each factor was evaluated at several values of -log(ion activity product for hydroxyapatite): pI(HA). Solutions were formulated to minimize variation in pH, which varied by < or =0.03 for a given comparison (individual pI(HA)) and by 0.42-0.82 over the range of pI(HA) within experiments. Lesions on surfaces from which cementum had been ground were significantly deeper than on intact surfaces, but this is considered to be due to subsurface mechanical damage and not to a solubility difference. Neither the concentration of undissociated buffer nor the presence of magnesium ions significantly affected lesion depth. Lesion depth was strongly influenced by the correlated variations in pI(HA) and pH. At pI(HA) 54 and 55, only extremely shallow lesions formed. From pI(HA) 56, lesion depth increased with increasing pI(HA). The results confirm that the solubility of the mineral of root tissues is higher than that of hydroxyapatite, but indicate that it is probably lower than suggested by Hoppenbrouwers et al. [Arch Oral Biol 1987;32:319-322]. For calcium concentrations of 3-12 mM, the critical pH for root tissue mineral was calculated as 5.22-5.66 assuming solubility equivalent to pI(HA) 54 and 5.08-5.51 assuming pI(HA) 55.
Resumo:
BACKGROUND: Fas (CD95/Apo-1) ligand (FasL)-induced apoptosis in Fas-bearing cells is critically involved in modulating immune reactions and tissue repair. Apoptosis has also been described after mechanical vascular injury such as percutaneous coronary intervention. However, the relevance of cell death in this context of vascular repair remains unknown. METHODS AND RESULTS: To determine whether FasL-induced apoptosis is causally related to neointimal lesion formation, we subjected FasL-deficient (generalized lymphoproliferative disorder [gld], C57BL/6J) and corresponding wild-type (WT) mice to carotid balloon distension injury, which induces marked endothelial denudation and medial cell death. FasL expression in WT mice was induced in injured vessels compared with untreated arteries (P<0.05; n=5). Conversely, absence of functional FasL in gld mice decreased medial and intimal apoptosis (terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling [TUNEL] index) at 1 hour and 7 days after balloon injury (P<0.05; n=6). In addition, peritoneal macrophages isolated from gld mice showed no apoptosis and enhanced migration (P<0.05; n=4). In parallel, we observed increased balloon-induced macrophage infiltrations (anti-CD68) in injured arteries of FasL-deficient animals (P<0.05; n=6). Together with enhanced proliferation (bromodeoxyuridine index; P<0.05), these events resulted in a further increase in medial and neointimal cells (P<0.01; n=8) with thickened neointima in gld mice (intima/media ratio, x3.8 of WT; P<0.01). CONCLUSIONS: Our data identify proapoptotic and antiinflammatory effects of endogenous FasL as important factors in the process of neointimal lesion formation after balloon injury. Moreover, they suggest that activation of FasL may decrease neointimal thickening after percutaneous coronary intervention.
Resumo:
We have studied the effects of endogenous and exogenous estrogen on atherosclerotic lesions in apolipoprotein E-deficient mice. Female mice ovariectomized (OVX) at weaning displayed increases (P < 0.01) in fatty streak lesions in the proximal aorta and aortic sinus compared with female mice with intact ovarian function. These differences between the OVX and sham controls were apparent in both chow- and "Western-type" diet-fed mice. Moreover, increases in lesion size following OVX occurred without changes in plasma cholesterol. Hormone replacement with subdermal 17-beta-estradiol pellets releasing either 6, 14, or 28 micrograms/day significantly decreased (P < 0.001) atherosclerotic lesion area in both male and OVX female mice. In contrast, neither 17-alpha-estradiol (28 micrograms/day) or tamoxifen (85 micrograms/day) affected lesion progression in OVX female mice. In the Western diet-fed group, exogenous estradiol markedly reduced plasma cholesterol and triglycerides, whereas, in animals fed the chow diet, exogenous estrogen and tamoxifen treatment only decreased plasma and very low density lipoprotein triglycerides. However, lesion area was only weakly correlated with plasma cholesterol and triglycerides, 0.35 and 0.44 tau values, respectively (P < 0.01). In summary, in the apolipoprotein E-deficient mouse 17-beta-estradiol protects against atherosclerotic lesion formation, and this can only be partially explained through effects on plasma lipoprotein levels.
Resumo:
Permanent destruction of abnormal cardiac tissue responsible for cardiac arrhythmogenesis whilst avoiding collateral tissue injury forms the cornerstone of catheter ablation therapy. As the acceptance and performance of catheter ablation increases worldwide, limitations in current technology are becoming increasingly apparent in the treatment of complex arrhythmias such as atrial fibrillation. This review will discuss the role of new technologies aimed to improve lesion formation with the ultimate goal of improving arrhythmia-free survival of patients undergoing catheter ablation of atrial arrhythmias.
Resumo:
Background: Fundamental and genetic differences between women in the endometrium may cause some to develop endometriosis, whereas others (to not. Oral contraceptives (OC) may have in effect on the endometrium, rendering the development of endometriosis less likely. Study Design: Endometrium front women using CC (OCE) and menstrual endometrium (ME) from normal cycling women were transplanted onto the chicken chorioallantoic membrane (CAM), and endometriosis-like lesion formation was evalualed. Microarray gene expression profiling was performed to identify, differentially expressed genes in the endometrium front these groups. Microarray data were validated by real-time PCR. Results: Less endometriosis-like lesions were formed after transplantation of OCE than after transplantation of ME (p<.05). Most of the differentially expressed genes belong to the TGF beta superfamily. Real-time PCR validation revealed that inhibin beta A (INHBA) expression was significantly decreased in OCE its compared to ME. Conclusion: OC use affects the characteristics Of endometrium, rendering it less potent to develop into endometriosis. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Erwinia carotovora subsp. carotovora is a bacterial phytopathogen that causes soft rot in various agronomically important crop plants. A genetically specified resistance to E. carotovora has not been defined, and plant resistance to this pathogen is established through nonspecific activation of basal defense responses. This, together with the broad host range, makes this pathogen a good model for studying the activation of plant defenses. Production and secretion of plant cell wall-degrading enzymes (PCWDE) are central to the virulence of E. carotovora. It also possesses the type III secretion system (TTSS) utilized by many Gram-negative bacteria to secrete virulence- promoting effector proteins to plant cells. This study elucidated the role of E. carotovora HrpN (HrpNEcc), an effector protein secreted through TTSS, and the contribution of this protein in the virulence of E. carotovora. Treatment of plants with HrpNEcc was demonstrated to induce a hypersensitive response (HR) as well as resistance to E. carotovora. Resistance induced by HrpNEcc required both salicylic acid (SA)- and jasmonate/ethylene (JA/ET)-dependent defense signaling in Arabidopsis. Simultaneous treatment of Arabidopsis with HrpNEcc and PCWDE polygalacturonase PehA elicited accelerated and enhanced induction of defense genes but also increased production of superoxide and lesion formation. This demonstrates mutual amplification of defense signaling by these two virulence factors of E. carotovora. Identification of genes that are rapidly induced in response to a pathogen can provide novel information about the early events occurring in the plant defense response. CHLOROPHYLLASE 1 (AtCLH1) and EARLY RESPONSIVE TO DEHYDRATION 15 (ERD15) are both rapidly triggered by E. carotovora in Arabidopsis. Characterization of AtCLH1 encoding chlorophyll-degrading enzyme chlorophyllase indicated that it might have a role in chlorophyll degradation during plant tissue damage. Silencing of this gene resulted in increased accumulation of reactive oxygen species (ROS) in response to pathogen infection in a light-dependent manner. This led to enhanced SA-dependent defenses and resistance to E. carotovora. Moreover, crosstalk between different defense signaling pathways was observed; JA-dependent defenses and resistance to fungal pathogen Alternaria brassicicola were impaired, indicating antagonism between SA- and JA-dependent signaling. Characterization of ERD15 suggested that it is a novel, negative regulator of abscisic acid (ABA) signaling in Arabidopsis. Overexpression of ERD15 resulted in insensitivity to ABA and reduced tolerance of the plants to dehydration stress. However, simultaneously, the resistance of the plants to E. carotovora was enhanced. Silencing of ERD15 improved freezing and drought tolerance of transgenic plants. This, together with the reducing effect of ABA on seed germination, indicated hypersensitivity to this phytohormone. ERD15 was hypothesized to act as a capacitor that controls the appropriate activation of ABA responses in Arabidopsis.
Resumo:
The subjects under two different educational conditions were presented with a multidimensional discrimination task. Their responses were analyzed in terms of nine strategy components, scores on which were analyzed by means of cluster analysis. In combination with the cluster analysis, the qualitative analysis was used to analyze the development of primary school pupils' strategies of artificial concept formation. The results indicate that: (1) Different strategies used by pupils have different influence on their artificial concept formation; (2) The pupils of grade 2 tend to use stimulus-preference and stimulus-describing strategies, while the pupils of grade 4、6 tend to use dimension-checking and focusing strategies to form artificial concepts; (3) Under the different educational conditions, there is a significant difference between the pupils of grade 2 and grade 4, while no significant difference between the pupils of grade 6; and (4) The strategy components change in a complicated manner in the development of the primary school pupils' strategy. With the development of cognitive strategies, some components' scores increase while some increase at first, and then decrease rapidly.
Resumo:
Acousto-optic (AO) sensing and imaging (AOI) is a dual-wave modality that combines ultrasound with diffusive light to measure and/or image the optical properties of optically diffusive media, including biological tissues such as breast and brain. The light passing through a focused ultrasound beam undergoes a phase modulation at the ultrasound frequency that is detected using an adaptive interferometer scheme employing a GaAs photorefractive crystal (PRC). The PRC-based AO system operating at 1064 nm is described, along with the underlying theory, validating experiments, characterization, and optimization of this sensing and imaging apparatus. The spatial resolution of AO sensing, which is determined by spatial dimensions of the ultrasound beam or pulse, can be sub-millimeter for megahertz-frequency sound waves.A modified approach for quantifying the optical properties of diffuse media with AO sensing employs the ratio of AO signals generated at two different ultrasound focal pressures. The resulting “pressure contrast signal” (PCS), once calibrated for a particular set of pressure pulses, yields a direct measure of the spatially averaged optical transport attenuation coefficient within the interaction volume between light and sound. This is a significant improvement over current AO sensing methods since it produces a quantitative measure of the optical properties of optically diffuse media without a priori knowledge of the background illumination. It can also be used to generate images based on spatial variations in both optical scattering and absorption. Finally, the AO sensing system is modified to monitor the irreversible optical changes associated with the tissue heating from high intensity focused ultrasound (HIFU) therapy, providing a powerful method for noninvasively sensing the onset and growth of thermal lesions in soft tissues. A single HIFU transducer is used to simultaneously generate tissue damage and pump the AO interaction. Experimental results performed in excised chicken breast demonstrate that AO sensing can identify the onset and growth of lesion formation in real time and, when used as feedback to guide exposure parameters, results in more predictable lesion formation.
Resumo:
Bacteriophage-encoded endolysins are produced at the end of the phage lytic cycle for the degradation of the host bacterial cell. Endolysins offer the potential as alternatives to antibiotics as biocontrol agents or therapeutics. The lytic mechanisms of three bacteriophage endolysins that target Clostridium species living under different conditions were investigated. For these endolysins a trigger and release mechanism is proposed for their activation. During host lysis, holin lesion formation suddenly permeabilises the membrane which exposes the cytosol-sequestered endolysins to a sudden environmental shock. This shock is suggested to trigger a conformational switch of the endolysins between two distinct dimer states. The switch between dimer states is proposed to activate a novel autocleavage mechanism that cleaves the linker connecting the N-terminal catalytic domain and the C-terminal domain to release the catalytic domain for more efficient digestion of the bacterial cell wall. Crystal structures of cleaved fragments of CD27L and CTP1L were previously obtained. In these structures cleavage occurs at the stem of the linker connected to the C-terminal domain. Despite a sequence identity of only 22% between 81 residues of the C-terminal domains of CD27L and CTP1L, they represent a novel fold that is identified in a number of different lysins. Within the crystal structures the two distinct dimerization modes are represented: the elongated head‐on dimer and the side-by‐side dimer. Introducing mutations that inhibit either of the dimerization states caused a decrease in the efficiency of both the autocleavage mechanism and the lytic activity of the endolysins. The two dimer states were validated for the full-length endolysins in solution by using right angle light scattering, small angle X‐ray scattering and cross-linking experiments. Overall, the data represents a new type of regulation governed by the C-terminal domains that is used to activate these endolysins once they enter the bacterial cell wall.
Resumo:
Purpose: RAGE regulates pro-inflammatory responses in diverse cells and tissues. This study has investigated if RAGE plays a role in immune cell mobilization and choroidal neovascular pathology that is associated with the neovascular form of age-related macular degeneration (nvAMD).
Methods: RAGE null (RAGE−/−) mice and age-matched wild type (WT) control mice underwent laser photocoagulation to generate choroidal neovascularization (CNV) lesions which were then analyzed for morphology, S100B immunoreactivity and inflammatory cell infiltration. The chemotactic ability of bone marrow derived macrophages (BMDMs) towards S100B was investigated.
Results: RAGE expression was significantly increased in the retina during CNV of WT mice (p<0.001). RAGE−/− mice exhibited significantly reduced CNV lesion size when compared to WT controls (p<0.05). S100B mRNA was upregulated in the lasered WT retina but not RAGE−/− retina and S100B immunoreactivity was present within CNV lesions although levels were less when RAGE−/− mice were compared to WT controls. Activated microglia in lesions were considerably less abundant in RAGE−/− mice when compared to WT counterparts (p<0.001). A dose dependent chemotactic migration was observed in BMDMs from WT mice (p<0.05–0.01) but this was not apparent in cells isolated from RAGE−/− mice.
Conclusions: RAGE-S100B interactions appear to play an important role in CNV lesion formation by regulating pro-inflammatory and angiogenic responses. This study highlights the role of RAGE in inflammation-mediated outer retinal pathology.