5 resultados para ARPKD
Resumo:
The longest open reading frame of PKHD1 (polycystic kidney and hepatic disease 1), the autosomal recessive polycystic kidney disease (ARPKD) gene, encodes a single-pass, integral membrane protein named polyductin or fibrocystin. A fusion protein comprising its intracellular C-terminus, FP2, was previously used to raise a polyclonal antiserum shown to detect polyductin in several human tissues, including liver. In the current study, we aimed to investigate by immunohistochemistry the detailed polyductin localization pattern in normal (ductal plate [DP], remodelling ductal plate [RDP], remodelled bile ducts) and abnormal development of the primitive intrahepatic biliary system, known as ductal plate malformation (DPM). This work also included the characterization of polyductin expression profile in various histological forms of neonatal and infantile cholestasis, and in cholangiocellular carcinoma (CCC) and hepatocellular carcinoma (HCC). We detected polyductin expression in the intrahepatic biliary system during the DP and the RDP stages as well as in DPM. No specific staining was found at the stage of remodelled bile ducts. Polyductin was also detected in liver biopsies with neonatal cholestasis, including mainly biliary atresia and neonatal hepatitis with ductular reaction as well as congenital hepatic fibrosis. In addition, polyductin was present in CCC, whereas it was absent in HCC. Polyductin was also co-localized in some DP cells together with oval stem cell markers. These results represent the first systematic study of polyductin expression in human pathologies associated with abnormal development of intrahepatic biliary tree, and support the following conclusions: (i) polyductin expression mirrors developmental properties of the primitive intrahepatic biliary system; (ii) polyductin is re-expressed in pathological conditions associated with DPM and (iii) polyductin might be a potential marker to distinguish CCC from HCC.
Resumo:
Autosomal recessive polycystic kidney disease is a hereditary fibrocystic disease that involves the kidneys and the biliary tract. Mutations in the PKHD1 gene are responsible for typical forms of autosomal recessive polycystic kidney disease. We have generated a mouse model with targeted mutation of Pkbd1 by disrupting exon 4, resulting in a mutant transcript with deletion of 66 codons and expression at similar to 30% of wild-type levels. Pkhd1(del4/d3l4) mice develop intrahepatic bile duct proliferation with progressive cyst formation and associated periportal fibrosis. In addition, these mice exhibit extrahepatic manifestations, including pancreatic cysts, splenomegaly, and common bile duct dilation. The kidneys are unaffected both histologically and functionally. Fibrocystin is expressed in the apical membranes and cilia of bile ducts and distal nephron segments but is absent from the proximal tubule. This pattern is unchanged in orthologous models of autosomal dominant polycystic kidney disease due to mutation in Pkd1 or Pkd2. Mutant fibrocystin in Pkhd1(del4/d3l4) mice also retains this expression pattern. The hypomorphic Pkhd1(del4/d3l4) mouse model provides evidence that reduced functional levels of fibrocystin are sufficient for cystogenesis and fibrosis in the liver and pancreas, but not the kidney, and supports the hypothesis of species-dependent differences in susceptibility of tissues to Pkbdl mutations.
Resumo:
Autosomal recessive polycystic kidney disease (ARPKD) is an inherited disease characterized by a malformation complex which includes cystically dilated tubules in the kidneys and ductal plate malformation in the liver. The disorder is observed primarily in infancy and childhood, being responsible for significant pediatric morbidity and mortality. All typical forms of ARPKD are caused by mutations in a single gene, PKHD1 (polycystic kidney and hepatic disease 1). This gene has a minimum of 86 exons, assembled into multiple differentially spliced transcripts and has its highest level of expression in kidney, pancreas and liver. Mutational analyses revealed that all patients with both mutations associated with truncation of the longest open reading frame-encoded protein displayed the severe phenotype. This product, polyductin, is a 4,074-amino acid protein expressed in the cytoplasm, plasma membrane and primary apical cilia, a structure that has been implicated in the pathogenesis of different polycystic kidney diseases. In fact, cholangiocytes isolated from an ARPKD rat model develop shorter and dysmorphic cilia, suggesting polyductin to be important for normal ciliary morphology. Polyductin seems also to participate in tubule morphogenesis and cell mitotic orientation along the tubular axis. The recent advances in the understanding of in vitro and animal models of polycystic kidney diseases have shed light on the molecular and cellular mechanisms of cyst formation and progression, allowing the initiation of therapeutic strategy designing and promising perspectives for ARPKD patients. It is notable that vasopressin V2 receptor antagonists can inhibit/halt the renal cystic disease progression in an orthologous rat model of human ARPKD.
Resumo:
Background: Cardiovascular disease (CVD) is a common cause of morbidity and mortality in childhood chronic kidney disease (CKD). Left ventricular hypertrophy (LVH) is known to be one of the earliest events in CVD development. Left ventricular diastolic function (DF) is thought to be also impaired in children with CKD. Tissue Doppler imaging (TDI) provide an accurate measure of DF and is less load dependent than conventional ECHO. Aim: To evaluate the LV mass and the DF in a population of children with CKD. Methods: 37 patients, median age: 10.4 (3.3-19.8); underlying renal disease: hypo/dysplasia (N=28), nephronophthisis (N=4), Alport (N=2), ARPKD (N=3), were analyzed. Thirty-eight percent of the patients were on stage 1-2 of CKD, 38% on stage 3, 16% on stage 4. Three patients were on dialysis. The most frequent factors related to CVD in CKD have been studied. LVH has been defined as a left ventricular mass index (LVMI) more than 35.7 g/h2,7. Results: Twenty-five patients (81%) had a LVH. LVMI and diastolic function index (E’/A’) were significantly related to the glomerular filtration rate (p<0.003 and p<0.004). Moreover the LVMI was correlated with the phosphorus and the hemoglobin level (p<0.0001 and p<0.004). LVH was present since the first stages of CKD (58% of patients were on stages 1-2). Early-diastolic myocardial velocity was reduced in 73% of our patients. We didn’t find any correlation between LVH and systemic hypertension. Conclusion: ECHO evaluation with TDI is suggested also in children prior to dialysis and with a normal blood pressure. If LVH is diagnosed, a periodic follow-up is necessary with the treatment of the modifiable risk factors (hypertension, disturbances of calcium, phosphorus and PTH, anemia ).
Resumo:
Congenital hepatic fibrosis has been described as a lethal disease with monogenic autosomal recessive inheritance in the Swiss Franches-Montagnes horse breed. We performed a genome-wide association study with 5 cases and 12 controls and detected an association on chromosome 20. Subsequent homozygosity mapping defined a critical interval of 952 kb harboring 10 annotated genes and loci including the polycystic kidney and hepatic disease 1 (autosomal recessive) gene (PKHD1). PKHD1 represents an excellent functional candidate as variants in this gene were identified in human patients with autosomal recessive polycystic kidney and hepatic disease (ARPKD) as well as several mouse and rat mutants. Whereas most pathogenic PKHD1 variants lead to polycystic defects in kidney and liver, a small subset of the human ARPKD patients have only liver symptoms, similar to our horses with congenital hepatic fibrosis. The PKHD1 gene is one of the largest genes in the genome with multiple alternative transcripts that have not yet been fully characterized. We sequenced the genomes of an affected foal and 46 control horses to establish a comprehensive list of variants in the critical interval. We identified two missense variants in the PKHD1 gene which were strongly, but not perfectly associated with congenital hepatic fibrosis. We speculate that reduced penetrance and/or potential epistatic interactions with hypothetical modifier genes may explain the imperfect association of the detected PKHD1 variants. Our data thus indicate that horses with congenital hepatic fibrosis represent an interesting large animal model for the liver-restricted subtype of human ARPKD.