4 resultados para ARA03B


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low planktic and benthic d18O and d13C values in sediments from the Nordic seas of cold stadials of the last glaciation have been attributed to brines, formed similar to modern ones in the Arctic Ocean. To expand on the carbon isotopes of this hypothesis I investigated benthic d13C from the modern Arctic Ocean. I show that mean d13C values of live epibenthic foraminifera from the deep Arctic basins are higher than mean d13C values of upper slope epibenthic foraminifera. This agrees with mean high d13C values of dissolved inorganic carbon (DIC) in Arctic Bottom Water (ABW), which are higher than mean d13CDIC values from shallower water masses of mainly Atlantic origin. However, adjustments for oceanic 13C-Suess depletion raise subsurface and intermediate water d13CDIC values over ABW d13CDIC ones. Accordingly, during preindustrial Holocene times, the d13CDIC of ABW was as high or higher than today, but lower than the d13CDIC of younger subsurface and intermediate water. If brine-enriched water significantly ventilated ABW, brines should have had high d13CDIC values. Analogously, high-d13CDIC brines may have been formed in the Nordic seas during warm interstadials. During cold stadials, when most of the Arctic Ocean was perennially sea-ice covered, a cessation of high-d13CDIC brine rejection may have lowered d13CDIC values of ABW, and ultimately the d13CDIC in Nordic seas intermediate and deep water. So, in contrast to the idea of enhanced brine formation during cold stadials, the results of this investigation imply that a cessation of brine rejection would be more likely.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Records of the spatial and temporal variability of Arctic Ocean sea ice are of significance for understanding the causes of the dramatic decrease in Arctic sea-ice cover of recent years. In this context, the newly developed sea-ice proxy IP25, a mono-unsaturated highly branched isoprenoid alkene with 25 carbon atoms biosynthesized specifically by sea-ice associated diatoms and only found in Arctic and sub-Arctic marine sediments, has been used to reconstruct the recent spatial sea-ice distribution. The phytoplankton biomarkers 24S-brassicasterol and dinosterol were determined alongside IP25 to distinguish ice-free or permanent ice conditions, and to estimate the sea-ice conditions semi-quantitatively by means of the phytoplankton-IP25 index (PIP25). Within our study, for the first time a comprehensive data set of these biomarkers was produced using fresh and deep-frozen surface sediment samples from the Central Arctic Ocean proper (>80°N latitude) characterised by a permanent ice cover today and recently obtained surface sediment samples from the Chukchi Plateau/Basin partly covered by perennial sea ice. In addition, published and new data from other Arctic and sub-Arctic regions were added to generate overview distribution maps of IP25 and phytoplankton biomarkers across major parts of the modern Arctic Ocean. These comprehensive biomarker data indicate perennial sea-ice cover in the Central Arctic, ice-free conditions in the Barents Sea and variable sea-ice situations in other marginal seas. The low but more than zero values of biomarkers in the Central Arctic supported the low in-situ productivity there. The PIP25 index values reflect modern sea-ice conditions better than IP25 alone and show a positive correlation with spring/summer sea ice. When calculating and interpreting PIP25 index as a (semi-quantitative) proxy for reconstructions of present and past Arctic sea-ice conditions from different Arctic/sub-Arctic areas, information of the source of phytoplankton biomarkers and the possible presence of allochthonous biomarkers is needed, and the records of the individual biomarkers always should be considered as well.