992 resultados para AQUEOUS FLUID
Resumo:
Tin-polymetallic greisen-type deposits in the Itu Rapakivi Province and Rondonia Tin Province, Brazil are associated with late-stage rapakivi fluorine-rich peraluminous alkali-feldspar granites. These granites contain topaz and/or muscovite or zinnwaldite and have geochemical characteristics comparable to the low-P sub-type topaz-bearing granites. Stockworks and veins are common in Oriente Novo (Rondonia Tin Province) and Correas (Itu Rapakivi Province) deposits, but in the Santa Barbara deposit (Rondonia Tin Province) a preserved cupola with associated bed-like greisen is predominant. The contrasting mineralization styles reflect different depths of formation, spatial relationship to tin granites, and different wall rock/fluid proportions. The deposits contain a similar rare-metal suite that includes Sri (+/-W, +/-Ta, +/-Nb), and base-metal suite (Zn-Cu-Pb) is present only in Correas deposit. The early fluid inclusions of the Correas and Oriente Novo deposits are (1) low to moderate-salinity (0-19 wt.% NaCl eq.) CO2-bearing aqueous fluids homogenizing at 245-450 degreesC, and (2) aqueous solutions with low CO2, low to moderate salinity (0-14 wt.% NaCl eq.), which homogenize between 100 and 340 T. In the Santa Barbara deposit, the early inclusions are represented by (1) low-salinity (5-12 wt.% NaCl eq.) aqueous fluids with variable CO2 contents, homogenizing at 340 to 390 T, and (2) low-salinity (0-3 wt.% NaCl eq.) aqueous fluid inclusions, which homogenize at 320380 degreesC. Cassiterite, wolframite, columbite-tantalite, scheelite, and sulfide assemblages accompany these fluids. The late fluid in the Oriente Novo and Correas deposit was a low-salinity (0-6 wt.% NaCl eq.) CO2-free aqueous solution, which homogenizes at (100-260 degreesC) and characterizes the sulfide fluorite-sericite association in the Correas deposit. The late fluid in the Santa Barbara deposit has lower salinity (0-3 wt.% NaCl eq.) and characterizes the late-barren-quartz, muscovite and kaolinite veins. Oxygen isotope thermometry coupled with fluid inclusion data suggest hydrothermal activity at 240-450 degreesC, and 1,0-2.6 kbar fluid pressure at Correas and Oriente Novo. The hydrogen isotope composition of breccia-greisen, stockwork, and vein fluids (delta(18)O quartz from 9.9parts per thousand to 10.9parts per thousand, deltaDH(2)O from 4.13parts per thousand to 6.95parts per thousand) is consistent with a fluid that was in equilibrium with granite at temperatures from 450 to 240 degreesC. In the Santa Barbara deposit, the inferred temperatures for quartz-pods and bed-like greisens are much higher (570 and 500 degreesC, respectively), and that for the cassiterite-quartz-veins is 415 degreesC. The oxygen and hydrogen isotope composition of greisen and quartz-pods fluids (delta(18)O(qtz-H2O)=5.5-6.1parts per thousand) indicate that the fluid equilibrated with the albite granite, consistent with a magmatic origin. The values for mica (delta(18)O(mica-H2O)=33-9.8parts per thousand) suggest mixing with meteoric water. Late muscovite veins (delta(18)O(qtz-H2O)=-6.4parts per thousand) and late quartz (delta(18)O(mica-H2O)=-3.8parts per thousand) indicate involvement of a meteoric fluid. Overall, the stable isotope and fluid inclusion data imply three fluid types: (1) an early orthomagmatic fluid, which equilibrated with granite; (2) a mixed orthomagmatic-meteoric fluid; and (3) a late hydrothermal meteoric fluid. The first two were responsible for cassiterite, wolframite, and minor coluChange in the redox conditions related to mixing-of magmatic and meteoric fluids favored important sulfide mineralization in the Correas deposit. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Rutile (TiO2) is an important host phase for high field strength elements (HFSE) such as Nb in metamorphic and subduction zone environments. The observed depletion of Nb in arc rocks is often explained by the hypothesis that rutile sequesters HFSE in the subducted slab and overlying sediment, and is chemically inert with respect to aqueous fluids evolved during prograde metamorphism in the forearc to subarc environment. However, field observations of exhumed terranes, and experimental studies, indicate that HFSE may be soluble in complex aqueous fluids at high pressure (i.e., >0.5 GPa) and moderate to high temperature (i.e., >300 degrees C). In this study, we investigated experimentally the mobility of Nb in NaCl- and NaF-bearing aqueous fluids in equilibrium with Nb-bearing rutile at pressure-temperature conditions applicable to fluid evolution in arc environments. Niobium concentrations in aqueous fluid at rutile saturation were measured directly by using a hydrothermal diamond-anvil cell (HDAC) and synchrotron X-ray fluorescence (SXRF) at 2.1 to 6.5 GPa and 300-500 degrees C, and indirectly by performing mass loss experiments in a piston-cylinder (PC) apparatus at similar to 1 GPa and 700-800 degrees C. The concentration of Nb in a 10 wt% NaCl aqueous fluid increases from 6 to 11 mu g/g as temperature increases from 300 to 500 degrees C, over a pressure range from 2.1 to 2.8 GPa, consistent with a positive temperature dependence. The concentration of Nb in a 20 wt% NaCl aqueous fluid varies from 55 to 150 mu g/g at 300 to 500 degrees C, over a pressure range from 1.8 to 6.4 GPa; however, there is no discernible temperature or pressure dependence. The Nb concentration in a 4 wt% NaF-bearing aqueous fluid increases from 180 to 910 mu g/g as temperature increases from 300 to 500 degrees C over the pressure range 2.1 to 6.5 GPa. The data for the F-bearing fluid indicate that the Nb content of the fluid exhibits a dependence on temperature between 300 and 500 degrees C at >= 2 GPa, but there is no observed dependence on pressure. Together, the data demonstrate that the hydrothermal mobility of Nb is strongly controlled by the composition of the fluid, consistent with published data for Ti. At all experimental conditions, however, the concentration of Nb in the fluid is always lower than coexisting rutile, consistent with a role for rutile in moderating the Nb budget of arc rocks.
Resumo:
In order to constrain the salinity of subduction zone fluids, piston-cylinder experiments have been conducted to investigate the partitioning behaviour of Cl and F in subducted sediments. These experiments were performed at H2O-undersaturated conditions with a synthetic pelite starting composition containing 800 ppm Cl, over a pressure and temperature range of 2.5–4.5 GPa and 630–900 °C. Repetitive experiments were conducted with 1900 ppm Cl + 1000 ppm F, and 2100 ppm Cl. Apatite represents the most Cl-abundant mineral phase, with Cl concentration varying in the range 0.1–2.82 wt%. Affinity for Cl decreases over the following sequence: aqueous fluid > apatite ⩾ melt > other hydrous minerals (phengite, biotite and amphibole). It was found that addition of F to the Cl-bearing starting composition significantly lowers the Cl partition coefficients between apatite and melt (DClAp–melt) and apatite and aqueous fluid (DClAp–aq). Cl–OH exchange coefficients between apatite and melt (KdCl–OHAp–melt) and apatite and aqueous fluid (KdCl–OHAp–aq) were subsequently calculated. KdCl–OHAp–melt was found to vary from 1 to 58, showing an increase with temperature and a decrease with pressure and displaying a regular decrease with increasing H2O content in melt. Mole fractions of Cl and OH in melt were calculated based on an ideal mixing model for H2O, OH, O, Cl and F. The Cl contents of other hydrous minerals (phengite, biotite and amphibole) fall between 200 and 800 ppm, with resultant Cl partition coefficients from 0.02 to 0.49, appearing independent of the bulk Cl and F content. Preliminary data from this study show that the partitioning behaviour of F is strongly in favour of apatite relative to melt and phengite, with DFAp–melt = 15–51. Apatites from representative eclogite facies metasediments were examined and found to have low Cl contents close to ∼100 ppm. Calculations using our experimentally determined KdCl–OHAp–aq of 0.004 at 2.5 GPa, 630 °C indicate a low salinity character (0.5–2 wt% NaCleq) for the fluid formed during dehydration of subducted oceanic sediment at ∼80 km depth.
Resumo:
Twenty samples of siltstones and sandstones were taken from Ocean Drilling Program Site 1276 during Leg 210 for fluid inclusion studies. With the exception of one sample of vein calcite, all inclusions were in quartz grains. The results of fluid-inclusion petrology and microthermometry indicate the presence of three fluid inclusion types (Types 1, 2, and 3). Type 1 fluid inclusions are two-phase (liquid + vapor) aqueous inclusions, and Type 2 inclusions are monophase fluid inclusions (liquid or vapor). These are common in all samples and are formed either as primary isolated inclusions or as secondary inclusions as trails along annealed fractures in the grain. Type 3 fluid inclusions are three-phase (liquid + vapor + solid) inclusions. Type 3 inclusions are rare and are observed as isolated inclusions or in a cluster with other types (i.e., Types 1 and 2). The predominant population throughout the different units sampled is two-phase (liquid + vapor) aqueous fluid inclusions (i.e., Type 1). The temperature of homogenization (TH) bivariate plots for Type 1 inclusions shows dominance throughout the hole of low- to medium-salinity fluids with minimum trapping temperatures between 150° and 400°C.
Resumo:
锡矿床是与花岗岩在时间、空间、成因上有着密切联系的典型矿种之一。与锡矿有关的花岗岩多具有过铝、富钾、硅含量高的特征。传统观点认为与锡矿有关的花岗岩主要是S型花岗岩,可是近年在国内外相继发现了许多具有重要经济价值的锡矿床与富碱侵入岩有着密切成因联系。与富碱侵入岩有关的锡成矿作用日益受到地质学家的重视,锡矿床与富碱侵入岩的关系已成为研究热点之一,相关的研究工作虽然取得了很大的进展,但是富碱侵入岩体能否分异出富锡成矿流体还存在争议。研究表明,与岩浆岩有关的成矿与岩浆演化过程中成矿元素在流体-熔体相间的分配行为有着密切的关系。成矿元素在流体-熔体相间的分配行为除受到温度、压力及氧逸度等物理化学条件的制约外,还受到岩浆熔体成份及岩浆分异出来的流体化学组成的影响。以往有关锡在流体-熔体相间分配行为的实验研究主要侧重于改变流体相来观测锡的分配系数,且多为单一的含氯或含氟岩浆体系,这制约了对岩浆演化过程中元素在流体-熔体相间分配行为的深入认识。本文通过改变流体相、熔体相的化学组成,开展了一系列锡在流体和花岗质熔体相间分配行为的实验研究。综合分析了锡在晶体-熔体-流体间的分配行为,并结合地质实际探讨与富碱侵入岩有关的锡成矿的物理化学条件和成矿机理。研究成果对深入认识与花岗岩有关锡矿的成矿机理、丰富和完善与花岗岩有关的锡成矿理论、为进一步探索与花岗岩有关的锡成矿规律提供重要的实验依据。此外,实验对进一步推动实验地球化学学科发展具有重要意义。 实验在中国科学院地球化学研究所矿床地球化学国家重点实验室的成矿实验室完成,主要实验设备为快速内冷(RQV)高压釜。实验的温度为850℃,压力100MPa、氧逸度接近NNO。实验首先采用人工合成硅酸盐凝胶的方法制成具有不同化学组成的花岗质熔体,使用分析纯化学试剂配制不同成分和不同浓度的溶液,分别作为实验初始固液相。主要开展了三方面的实验研究:1.熔体相组成不变,以改变流体相组成来观察锡的分配行为。这组实验固相初始物为过碱质富钾的硅酸盐,初始液相分别为NaCl、KCl、HCl、HF、去离子水溶液;2.流体相组成不变,改变熔体化学组成观察锡分配行为。初始液相选用低浓度的0.1mol/L HCl溶液,熔体相为具不同化学组成的凝胶(其中一组改变熔体碱质含量和铝饱和指数ASI、另一组改变熔体钠钾摩尔比值);3.氟氯共存含水的花岗质岩浆体系中氟氯含量相对变化时锡分配行为。实验通过改变熔体相中氟含量和液相盐酸溶液的浓度来观察锡在含氟硅酸盐熔体和不同浓度盐酸溶液间的分配行为。氟主要以(NaF+KF)混合物的形式加入初始固相中。实验研究结果表明: 1.流体相络阴离子种类及含量对锡在流体-熔体相间的分配行为有着明显的影响。当流体相中络阴离子Cl-、F-含量增大时,有利于增大锡在流体-熔体相间的分配系数;尤其当流体为富氯的酸性流体时,锡在流体-熔体相间的分配系数随液相中HCl浓度的增大而增大并存在关系式logD Sn=2.0247×log[HCl]+0.6717([HCl]的单位为mol/L),锡在流体相中主要以二价锡氯配合物的形式迁移,锡倾向于分配进入富氯的酸性流体中。此外,富氯酸性流体与共存的熔体反应后,熔体中的碱质含量降低,铝饱和指数增大。 2.熔体化学组成对锡在熔体相/流体相的分配行为有着明显的影响。D Sn随着熔体中碱质含量增大而减小:D Sn=-0.0489×MAlk+0.4516, R2=0.98(MAlk为熔体中Na2O+K2O摩尔含量),表明富碱质熔体有利于锡在熔体相中富集,从而可能为锡矿形成提供矿质来源。D Sn随熔体ASI值的增大而增大:D Sn=0.1886×ASI-0.1256, R2=0.99,即过铝质熔体相对有利于锡分配进入流体相中。过铝质熔体中碱质总量及其它组分相对不变的前提下,熔体钠钾摩尔比值越高D Sn越小:D Sn=-0.0314×RNa/K+0.0483, R2=0.82(RNa/K为Na/K摩尔比值),富钠的熔体有利于锡分配进入熔体相,而富钾的熔体却相对有利于锡分配进入流体相中。 3.在氟氯共存花岗质岩浆体系中:①熔体相中氟含量对氯在流体-熔体相间的分配有着明显影响,熔体中氟含量降低有利于氯分配进入流体相。②熔体中氟含量大于约1 wt%后,D Sn小于0.1且变化不大,当液相富含HCl且熔体中氟含量从约1 wt%降低后,D Sn 迅速增大,即熔体中氟含量小于约1 wt%后锡倾向于分配进入富氯的酸性流体中。而富氟(F含量大于约1 wt%)的熔体有利于萃取锡并使锡在熔体相中富集。③熔体铝饱和指数ASI值越大,相应锡的分配系数越大;流体相中HCl浓度增大时,锡分配系数随之增大;当熔体为过铝质的花岗质熔体、流体富含HCl时有利于锡分配进入流体相。 分析总结与花岗岩有关的锡成矿特征和锡在不同晶体相和熔体相间的分配行为得出:壳源铝质、富碱、富挥发份、贫钙铁镁的岩浆在结晶分异演化过程中相对有利于锡在残余熔流体相中富集。因此,具有这些特征的岩浆结晶分异演化产生的晚期岩浆可富含锡,能为后期锡矿床的形成提供矿质来源。这种富锡富挥发份的岩浆在上侵过程中,当温度压力降低、岩浆水饱和度增大、硅含量增大、熔体相氟含量降低时,可分异出含氯富锡的成矿流体。 根据上述结论,分析了与湖南芙蓉锡矿床有着密切成因联系的骑田岭花岗岩的岩石化学特征、成岩成矿物理化学条件,得出芙蓉锡矿床成矿流体可由骑田岭晚期岩浆分异产生。 最后得出如下认识:1)当花岗质岩浆体系水不饱和、流体相络阴离子浓度低的情况下,锡倾向于分配进入熔体相中;2)水饱和富含挥发份的过铝、富钾的岩浆体系有利于锡分配进入流体相;3) 铝质、富钾、富挥发份的富碱侵入岩岩浆演化过程中可在有利的物理化学条件下分异出富锡的流体相,与芙蓉超大型锡矿床有成因联系的骑田岭富碱侵入岩体成岩过程中可分异出富锡的成矿流体。
Resumo:
The Amazonian Craton comprises an Archean domain surrounded by four successively younger Proterozoic tectonic provinces. Within the Rio-Negro-Juruena province the Serra da Providencia Intrusive Suite (1.60 and 1.53 Ga) consists of A-type rapakivi granites, charnockites and mangerites genetically associated with diabase dikes, gabbros and amphibolites lites. The original mafic melts were derived from a depleted mantle source (epsilon(Nd(T)) + 2.5 to +2.8; epsilon(Sr(T)) - 12.1). Underplated mafic magma induced melting of a short-lived fielsic crust, thus originating coeval felsic-inafic magmatism in a continental intraplate setting. The Colorado Complex, assigned to the Rondonian-San Ignacio province, comprises 1.35-1.36 Ga intrusive bimodal magmatism represented by monzonite gneisses associated with amphibolite, gabbro and metadiabase dikes intercalated with metasediments with detrital zircon that yield U-Pb ages of 1.35 to 1.42 Ga. Mafic samples display juvenile signatures (epsilon(Nd(T)) 0.0 to +5.2; epsilon(Sr(T)) -5.0 to -30.7) and are less contaminated than the Serra da Previdencia and Nova Brasiladndia ones. The generation of the basaltic magma is related to the subduction of an oceanic slab below the peridotite wedge (intraoceanic arc setting). Fluids and/or small melts from the slab impregnated the mantle. The Nova Brasilandia Sequence (Sunsas-Aguapei province) comprises a metasedimentary sequence intruded by 1.10-1.02 Ga metadiabases, gabbros, meta-gabbros, and amphibolites associated with granitic plutons (bimodal magmatism). The original tholeiitic magmas, derived from a depleted source (epsilon(Nd(T)) = +3.1 to +5.0), in a proto-oceanic setting, underwent subsequent contamination by the host rocks, as indicated by the isotopic and trace element data.
Resumo:
Moreira Gomes é um dos depósitos do campo mineralizado do Cuiú-Cuiú, província Aurífera do Tapajós, com recursos de 21,7 t de ouro. A zona mineralizada, com 1200 metros de comprimento, 30-50 metros de largura e, pelo menos, 400 metros de profundidade é controlada por uma estrutura subvertical de orientação E-W, associada a um sistema de falhas transcorrentes sinistrais. As rochas hospedeiras nesse depósito são predominantemente tonalitos de 1997 ± 2 Ma (Suite Intrusiva Creporizão). O estilo da alteração hidrotermal relacionado à mineralização é predominantemente fissural e localmente pervasivo. Os tipos de alteração hidrotermal são sericitização, carbonatação, cloritização, sulfetação, silicificação e epidotização, além da formação de veios de quartzo de espessuras variadas. Pirita é principal sulfeto e contém inclusões de galena, esfalerita, calcopirita e, em menor quantidade, de hessita e bismutinita. O ouro ocorre mais comumente como inclusão em cristais de pirita e, secundariamente, na forma livre em veios de quartzo. Ag, Pb e Bi foram detectados por análise semi-quantitativa como componentes das partículas de ouro. Estudo de inclusões fluidas identificou fluidos compostos por CO2 (Tipo 1), H2O-C O2-sal (Tipo 2) e H2O-sal (Tipo 3). O volátil CO2 é predominante na fase carbônica. O fluido do Tipo 2 apresenta densidade baixa a moderada, salinidade entre 1,6 e 11,8 % em peso equivalente de NaCl e foi aprisionado principalmente entre 280° e 350°C. No fluido do Tipo 3 o sistema químico pode conter aCl2 e, talvez, MgCl2, e a salinidade varia de zero a 10,1% em peso equivalente de NaCl. Apenas localmente a salinidade atingiu 25% em peso equivalente de NaCl. Esse fluido foi aprisionado principalmente entre 120° e 220°C e foi interpretado como resultado de mistura de fluido aquoso mais quente e levemente mais salino, com fluido mais frio e diluído. Globalmente, o estudo das inclusões fluidas indica estado heterogêneo durante o aprisionamento e ocorrência de separação de fases, mistura, flutuação de pressão e reequilíbrio das inclusões durante aprisionamento. A composição isotópica do fluido em equilíbrio com minerais hidrotermais (quartzo, clorita e calcita e pirita) e de inclusões fluidas apresenta valores de δ18O e δD entre +0,5 e +9,8 ‰, e -49 a -8 ‰, respectivamente. Os valores de 34S de pirita (-0,29 ‰ a 3,95 ‰) são provavelmente indicativos da presença de enxofre magmático. Pares minerais forneceram temperaturas de equilíbrio isotópico em geral concordante com as temperaturas de homogeneização de inclusões fluidas e compatíveis com as relações texturais. Os resultados isotópicos, combinados com os dados mineralógicos e de inclusões fluidas são interpretados como produto da evolução de um sistema magmático hidrotermal em três estágios. (1) Exsolução de fluido magmático aquoso e portador de CO2 entre 400°C e 320-350°C, seguido de separação de fases e precipitação principal da assembleia clorita-sericita-pirita-quartzo-ouro sob pressões menores que 2,1 kb e a 6-7 km de profundidade. (2) Resfriamento e continuação da exsolução do CO2 do fluido magmático geraram fluido aquoso, mais pobre a desprovido de CO2 e levemente mais salino, com aprisionamento dominantemente a 250°-280°C. A assembleia hidrotermal principal ainda precipitou, mas epidoto foi a principal fase nesse estágio. (3) Mistura do fluido aquoso do estágio 2, mais quente e mais salino, com um fluido aquoso mais frio e menos salino, de origem meteórica. Carbonatação está associada com esse estágio. A assembleia hidrotermal e os valores isotópicos indicam que fluido foi neutro a levemente alcalino e relativamente reduzido, que H2S (ou HS-) pode ter sido a espécie de enxofre predominante, e que Au(HS) -2 deve ter sido o complexo transportador de ouro. A deposição do ouro em Moreira Gomes ocorreu em resposta a diversos mecanismos, envolvendo a separação de fases, mistura e reações fluido-rocha. O depósito Moreira Gomes é interpretado como o produto de um sistema magmático-hidrotermal, mas não possui feições clássicas de depósitos relacionados a intrusões graníticas, tanto oxidadas como reduzidas. A idade de deposição do minério (1,86 Ga) sugere que o sistema magmático-hidrotermal pode estar relacionado com a fase final do extenso magmatismo cálcio-alcalino da Suíte Intrusiva Parauari, embora o magmatismo transicional a alcalino da Suíte Intrusiva Maloquinha não possa ser descartado.
Resumo:
Central é um depósito aurífero do campo mineralizado do Cuiú-Cuiú, Província Aurífera do Tapajós, Cráton Amazônico. A zona mineralizada está hospedada em falha e compreende 800m de comprimento na direção NW-SE, seguindo o trend regional da província Tapajós, com largura entre 50 e 70m e profundidade vertical de pelo menos 450m. A mineralização está hospedada em monzogranito datado em 1984±3 Ma e atribuído à Suíte Intrusiva Parauari. Os recursos auríferos preliminarmente definidos são de 18,6t de ouro. A alteração hidrotermal é predominantemente fissural. Sericitização, cloritização, silicificação, carbonatação e sulfetação foram os tipos de alteração identificados. Pirita é o sulfeto principal e os demais sulfetos (calcopirita, esfalerita e galena) estão em fraturas ou nas bordas da pirita. O ouro preenche fraturas da pirita e análises semi-quantitativas detectaram Ag associada ao ouro. Foram identificados três tipos de inclusões fluidas hospedados em veios e vênulas de quartzo. O tipo 1 é o menos abundante e consiste em inclusões fluidas compostas por uma (CO2vapor) ou duas fases (CO2liq-CO2vapor), o tipo 2 tem abundância intermediária e é formado por inclusões fluidas compostas por duas (H2Oliq-CO2liq) ou três fases (H2Oliq-CO2liq-CO2vapor) e o tipo 3 é o mais abundante e consiste em inclusões fluidas compostas por duas fases (H2Oliq- H2Ovapor). O CO2 representa o volátil nas inclusões com CO2 e essas (tipo 1 e 2) foram geradas pelo processo de separação de fases oriundo de um fluido aquo-carbônico. A densidade global (0,33 - 0,80 g/cm³) e a salinidade (11,15 - 2,42 % em peso equivalente de NaCl) desse fluido são baixas a moderadas e a temperatura de homogeneização mostra um máximo em 340ºC. Quanto ao tipo 3, o NaCl é o principal sal, a densidade global está no intervalo de 0,65 a 1,11 g/cm³, a salinidade compreendida entre 1,16 e 13,3 % em peso equivalente de NaCl e a temperatura de homogeneização é bimodal, com picos em 120-140ºC e 180ºC. A composição isotópica das inclusões fluidas presentes no quartzo e do quartzo, calcita e clorita mostram valores de δ18O e δD de +7,8 a +13,6 ‰ e -15 a -35 ‰, respectivamente. Os valores de δ34S na pirita são de +0,5 a +4,0 ‰ e δ13C na calcita e CO2 de inclusões fluidas de -18 a -3,7 ‰. Os valores de δ18OH2O e de δDH2O no quartzo e inclusões fluidas, respectivamente, plotam no campo das águas metamórficas, com um desvio em direção à linha da água meteórica. Considerando a inexistência de evento metamórfico na região do Tapajós à época da mineralização, o sistema hidrotermal responsável pela mineralização no Central, inicialmente, deu-se a partir de fluidos aquo-carbônicos magmático-hidrotermais, exsolvidos por magma félsico relacionado com a fase mais tardia de evolução da Suíte Intrusiva Parauari. As inclusões aquo-carbônicas e carbônicas formaram-se nessa etapa, predominantemente em torno de 340°C. A contínua exsolução de fluido pelo magma levou ao empobrecimento em CO2 nas fases mais tardias e, com o resfriamento do fluido, as inclusões aquosas passaram a predominar. A partir daí o sistema pode ter interagido com água meteórica, responsável pelo aprisionamento da maior parte das inclusões aquosas de mais baixa temperatura. É possível que parte das inclusões aquosas (as de maior temperatura) represente a mistura local dos fluidos de origens distintas. Essas observações e interpretações permitem classificar Central como um depósito de ouro magmático-hidrotermal relacionado à fase final da formação da Suíte Intrusiva Parauari.
Resumo:
O depósito aurífero Ouro Roxo, localizado no município de Jacareacanga, Província Aurífera do Tapajós, sudoeste do Pará, formou-se em um sistema hidrotermal que gerou veios de quartzo sulfetados, em zona de cisalhamento N-S, dúctil-rúptil, oblíqua, denominada Ouro Roxo-Canta Galo, cortando granitoides calcioalcalinos da Suíte Intrusiva Tropas, de idade paleoproterozoica e hospedeira da mineralização, em rochas localmente milonitizadas. Três tipos de fluidos foram caracterizados como geradores do depósito: 1) fluido aquoso H2O-NaCl-MgCl2-FeCl2 de salinidade baixa a moderada, com temperatura de homogeneização total (Th) = 180-280°C; 2) salmoura H2O-NaCl-CaCl2 com Th = 270-400°C, provavelmente portadoras de Cu e Bi, relacionadas geneticamente a um evento magmático contemporâneo ao cisalhamento que sofreu diluição pela mistura com água meteórica, baixando sua salinidade e temperatura (Th = 120-380°C); 3) fluido aquocarbônico de média salinidade, com Th = 230-430°C, que foi interpretado como o fluido mineralizante mais primitivo, provavelmente aurífero, relacionado com o cisalhamento. As condições de temperatura e pressão (T-P) de formação do minério, estimadas conjuntamente pelo geotermômetro da clorita e as isócoras das inclusões fluidas, situam-se entre 315 e 388°C e 2 a 4,1kb. Dois mecanismos simultâneos provocaram a deposição do minério em sítios de transtensão da zona de cisalhamento: 1) mistura de fluido aquocarbônico com salmoura magmática com aumento de fO2 e redução de pH; 2) interação entre os fluidos e os feldspatos e minerais ferromagnesianos do granitoide hospedeiro, com reações de hidrólise e sulfetação, provocaram redução de fO2 e fS2, com precipitação de sulfetos de Fe juntamente com ouro. O ambiente orogênico, o estilo filoneano do depósito, o controle estrutural pela zona de cisalhamento, a alteração hidrotermal (propilítica + fílica + carbonatação), a associação metálica (Au + Cu + Bi), o fluido mineralizante aquocarbônico associado com salmoura magmática na deposição do minério são compatíveis com um modelo orogênico com participação magmática para a gênese do depósito Ouro Roxo.
Resumo:
Pós-graduação em Química - IQ
Resumo:
The NNW-trending Nova Lacerda tholeiitic dike swarm in Mato Grosso State, Central Brazil, intrudes the Nova Lacerda granite (1.46 Ga) and the Jauru granite-greenstone terrain (ca. 1.79-1.77 Ga). The swarm comprises diabases I and II and amphibolites emplaced at ca. 1.38 Ga. Geochemical data indicate that these are evolved tholeiites characterized by high LILE/HSFE and LREE/HSFE ratios. Isotopic modelling yields positive epsilon(Nd)(T) values (+0.86 to +2.65), whereas values for epsilon(Sr)(T) range from positive to negative (+1.96 to -5.56). Crustal contamination did not play a significant petrogenetic role, as indicated by a comparison of isotopic data (Sr-Nd) from both dikes and country rocks, and by the relationship between isotopic and geochemical parameters (SiO2, K2O, Rb/Sr, and La/Yb) of the dikes. We attribute the origin of these tholeiites to fractional crystallization of evolved melts derived from a heterogeneous mantle source. Comparison of the geochemical and isotopic data of the studied swarm and other tholeiitic Mesoproterozoic mafic intrusions of the SWAmazonian Craton the Serra da Providencia, Colorado, and Nova Brasilandia bimodal suites - indicates that parental melts of the Nova Lacerda swarm were derived from the most enriched mantle source. This enrichment was probably caused by the stronger influence of the EMI component on the DMM end-member. These data, coupled with trace element bulk-rock geochemistry of the country rocks, and comparisons with the Colorado Complex of similar age, suggest a continental-margin arc setting for the emplacement of the Nova Lacerda dikes.
Resumo:
This PhD thesis concerns geochemical constraints on recycling and partial melting of Archean continental crust. A natural example of such processes was found in the Iisalmi area of Central Finland. The rocks from this area are Middle to Late Archean in age and experienced metamorphism and partial melting between 2.7-2.63 Ga. The work is based on extensive field work. It is furthermore founded on bulk rock geochemical data as well as in-situ analyses of minerals. All geochemical data were obtained at the Institute of Geosciences, University of Mainz using X-ray fluorescence, solution ICP-MS and laser ablation-ICP-MS for bulk rock geochemical analyses. Mineral analyses were accomplished by electron microprobe and laser ablation ICP-MS. Fluid inclusions were studied by microscope on a heating-freezing-stage at the Geoscience Center, University Göttingen. Part I focuses on the development of a new analytical method for bulk rock trace element determination by laser ablation-ICP-MS using homogeneous glasses fused from rock powder on an Iridium strip heater. This method is applicable for mafic rock samples whose melts have low viscosities and homogenize quickly at temperatures of ~1200°C. Highly viscous melts of felsic samples prevent melting and homogenization at comparable temperatures. Fusion of felsic samples can be enabled by addition of MgO to the rock powder and adjustment of melting temperature and melting duration to the rock composition. Advantages of the fusion method are low detection limits compared to XRF analyses and avoidance of wet-chemical processing and use of strong acids as in solution ICP-MS as well as smaller sample volumes compared to the other methods. Part II of the thesis uses bulk rock geochemical data and results from fluid inclusion studies for discrimination of melting processes observed in different rock types. Fluid inclusion studies demonstrate a major change in fluid composition from CO2-dominated fluids in granulites to aqueous fluids in TTG gneisses and amphibolites. Partial melts were generated in the dry, CO2-rich environment by dehydration melting reactions of amphibole which in addition to tonalitic melts produced the anhydrous mineral assemblages of granulites (grt + cpx + pl ± amph or opx + cpx + pl + amph). Trace element modeling showed that mafic granulites are residues of 10-30 % melt extraction from amphibolitic precursor rocks. The maximum degree of melting in intermediate granulites was ~10 % as inferred from modal abundances of amphibole, clinopyroxene and orthopyroxene. Carbonic inclusions are absent in upper-amphibolite facies migmatites whereas aqueous inclusion with up to 20 wt% NaCl are abundant. This suggests that melting within TTG gneisses and amphibolites took place in the presence of an aqueous fluid phase that enabled melting at the wet solidus at temperatures of 700-750°C. The strong disruption of pre-metamorphic structures in some outcrops suggests that the maximum amount of melt in TTG gneisses was ~25 vol%. The presence of leucosomes in all rock types is taken as the principle evidence for melt formation. However, mineralogical appearance as well as major and trace element composition of many leucosomes imply that leucosomes seldom represent frozen in-situ melts. They are better considered as remnants of the melt channel network, e.g. ways on which melts escaped from the system. Part III of the thesis describes how analyses of minerals from a specific rock type (granulite) can be used to determine partition coefficients between different minerals and between minerals and melt suitable for lower crustal conditions. The trace element analyses by laser ablation-ICP-MS show coherent distribution among the principal mineral phases independent of rock composition. REE contents in amphibole are about 3 times higher than REE contents in clinopyroxene from the same sample. This consistency has to be taken into consideration in models of lower crustal melting where amphibole is replaced by clinopyroxene in the course of melting. A lack of equilibrium is observed between matrix clinopyroxene / amphibole and garnet porphyroblasts which suggests a late stage growth of garnet and slow diffusion and equilibration of the REE during metamorphism. The data provide a first set of distribution coefficients of the transition metals (Sc, V, Cr, Ni) in the lower crust. In addition, analyses of ilmenite and apatite demonstrate the strong influence of accessory phases on trace element distribution. Apatite contains high amounts of REE and Sr while ilmenite incorporates about 20-30 times higher amounts of Nb and Ta than amphibole. Furthermore, trace element mineral analyses provide evidence for magmatic processes such as melt depletion, melt segregation, accumulation and fractionation as well as metasomatism having operated in this high-grade anatectic area.
Resumo:
We analysed the Mo isotope composition of a comprehensive series of molybdenite samples from the porphyry- type Questa deposit (NM, USA), as well as one rhyolite and one granite sample, directly associated with the Mo mineralization. The δ98Mo of the molybdenites ranges between −0.48‰ and +0.40‰, with a median at −0.05‰. The median Mo isotope composition increases from early magmatic (−0.29‰) to hydrothermal (−0.05‰) breccia mineralization (median bulk breccia = −0.17‰) to late stockwork veining (+0.22‰). Moreover, variations of up to 0.34‰ are found between different molybdenite crystals within an individual hand specimen. The rhyolite sample with 0.12 μg g−1 Mo has δ98Mo = −0.57‰ and is lighter than all molybde- nites from the Questa deposit, interpreted to represent the igneous leftover after aqueous ore fluid exsolution. We recognize three Mo isotope fractionation processes that occur between about 700 and 350 °C, affecting the Mo iso- tope composition of magmatic–hydrothermal molybdenites. Δ1Mo: Minerals preferentially incorporate light Mo isotopes during progressive fractional crystallization in subvolcanic magma reservoirs, leaving behind a melt enriched in heavy Mo isotopes. Δ2Mo: Magmatic–hydrothermal fluids preferentially incorporate heavy Mo iso- topes upon fluid exsolution. Δ3Mo: Light Mo isotopes get preferentially incorporated in molybdenite during crys- tallization from an aqueous fluid, leaving behind a hydrothermal fluid that gets heavier with progressive molybdenite crystallization. The sum of all three fractionation processes produces molybdenites that record heavier δ98Mo compositions than their source magmas. This implies that the mean δ98Mo of molybdenites published so far (~0.4‰) likely represents a maximum value for the Mo isotope composition of Phanerozoic igneous upper crust.
Resumo:
The phase assemblages and compositions in a K-bearing lherzolite + H2O system are determined between 4 and 6 GPa and 850–1200 °C, and the melting reactions occurring at subarc depth in subduction zones are constrained. Experiments were performed on a rocking multi-anvil apparatus. The experiments had around 16 wt% water content, and hydrous melt or aqueous fluid was segregated and trapped in a diamond aggregate layer. The compositions of the aqueous fluid and hydrous melt phases were measured using the cryogenic LA-ICP-MS technique. The residual lherzolite consists of olivine, orthopyroxene, clinopyroxene, and garnet, while diamond (C) is assumed to be inert. Hydrous and alkali-rich minerals were absent from the run products due to preferred dissolution of K2O (and Na2O) to the aqueous fluid/hydrous melt phases. The role of phlogopite in melting relations is, thus, controlled by the water content in the system: at the water content of around 16 wt% used here, phlogopite is unstable and thus does not participate in melting reactions. The water-saturated solidus, i.e., the first appearance of hydrous melt in the K–lherzolite composition, is located between 900 and 1000 °C at 4 GPa and between 1000 and 1100 °C at 5 and 6 GPa. Compositional jumps between hydrous melt and aqueous fluid at the solidus include a significant increase in the total dissolved solids load. All melts/fluids are peralkaline and calcium-rich. The melting reactions at the solidus are peritectic, as olivine, clinopyroxene, garnet, and H2O are consumed to generate hydrous melt plus orthopyroxene. Our fluid/melt compositional data demonstrate that the water-saturated hybrid peridotite solidus lies above 1000 °C at depths greater than 150 km and that the second critical endpoint is not reached at 6 GPa for a K2O–Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–Cr2O3(–TiO2) peridotite composition.