997 resultados para AQUAPORIN 1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquaporin 1 (AQP1; also known as CHIP, a channel-forming integral membrane protein of 28 kDa) is the first protein to be shown to function as a water channel and has been recently shown to be present in the rat retina. We previously showed (Kim et al. [1998] Neurosci Lett 244:52-54) that AQP1-like immunoreactivity is present in a certain population of amacrine cells in the rat retina. This study was conducted to characterize these cells in more detail, With immunocytochemistry using specific antisera against AQP1, whole-mount preparations and 50-mum-thick vibratome sections were examined by light and electron microscopy. These cells were a class of amacrine cells, which had symmetric bistratified dendritic trees ramified in stratum 2 and in the border of strata 3 and 4 of the inner plexiform layer (IPL). Their dendritic field diameters ranged from 90 to 230 mum. Double labeling with antisera against AQP1 and gamma-aminobutyric acid or glycine demonstrated that these AQP1-like-immunoreactive amacrine cells were immunoreactive for glycine. Their most frequent synaptic input was from other amacrine cell processes in both sublaminae a and b of the IPL, followed by a few cone bipolar cells. Their primary targets were other amacrine cells and ganglion cells in both sublaminae a and b of the IPL. In addition, synaptic output Onto bipolar cells was rarely observed in sublamina b of the IPL. Thus, the AQP1 antibody labels a class of glycinergic amacrine cells with small to medium-sized dendritic fields in the rat retina. (C) 2002 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquaporin-1 (AQP1) is a water channel that is highly expressed in tissues with rapid O(2) transport. It has been reported that this protein contributes to gas permeation (CO(2), NO and O(2)) through the plasma membrane. We show that hypoxia increases Aqp1 mRNA and protein levels in tissues, namely mouse brain and lung, and in cultured cells, the 9L glioma cell line. Stopped-flow light-scattering experiments confirmed an increase in the water permeability of 9L cells exposed to hypoxia, supporting the view that hypoxic Aqp1 up-regulation has a functional role. To investigate the molecular mechanisms underlying this regulatory process, transcriptional regulation was studied by transient transfections of mouse endothelial cells with a 1297 bp 5' proximal Aqp1 promoter-luciferase construct. Incubation in hypoxia produced a dose- and time-dependent induction of luciferase activity that was also obtained after treatments with hypoxia mimetics (DMOG and CoCl(2)) and by overexpressing stabilized mutated forms of HIF-1α. Single mutations or full deletions of the three putative HIF binding domains present in the Aqp1 promoter partially reduced its responsiveness to hypoxia, and transfection with Hif-1α siRNA decreased the in vitro hypoxia induction of Aqp1 mRNA and protein levels. Our results indicate that HIF-1α participates in the hypoxic induction of AQP1. However, we also demonstrate that the activation of Aqp1 promoter by hypoxia is complex and multifactorial and suggest that besides HIF-1α other transcription factors might contribute to this regulatory process. These data provide a conceptual framework to support future research on the involvement of AQP1 in a range of pathophysiological conditions, including edema, tumor growth, and respiratory diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquaporins (AQPs) are a family of proteins that mediate water transport across cells, but the extent to which they are involved in water transport across endothelial cells of the blood-brain barrier is not clear. Expression of AQP1 and AQP4 in rat brain microvessel endothelial cells was investigated in order to determine whether these isoforms were present and, in particular, to examine the hypothesis that brain endothelial expression of AQPs is dynamic and regulated by astrocytic influences. Reverse-transcriptase-polymerase chain reaction (RT-PCR) and immunocytochemistry showed that AQP1 mRNA and protein are present at very low levels in primary rat brain microvessel endothelial cells, and are up-regulated in passaged cells. Upon passage, endothelial cell expression of mdr1a mRNA is decreased, indicating loss of blood-brain barrier phenotype. In passage 4 endothelial cells, AQP1 mRNA levels are reduced by coculture above rat astrocytes, demonstrating that astrocytic influences are important in maintaining the low levels of AQP1 characteristic of the blood-brain barrier endothelium. Reverse-transcriptase-PCR revealed very low levels of AQP1 mRNA present in the RBE4 rat brain microvessel endothelial cell line, with no expression detected in primary cultures of rat astrocytes or in the C6 rat glioma cell line. In contrast, AQP4 mRNA is strongly expressed in astrocytes, but no expression is found in primary or passaged brain microvessel endothelial cells, or in RBE4 or C6 cells. Our results support the concept that expression of AQP1, which is seen in many non-brain endothelia, is suppressed in the specialized endothelium of the blood-brain barrier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquaporin-1 (AQP1) water channel protein expression is increased by hypertonic stress. The contribution of changes in protein stability to hypertonic induction of AQP1 have not been described. Incubation of BALB/c fibroblasts spontaneously expressing AQP1 with proteasome inhibitors increased AQP1 expression, suggesting basal proteasome-dependent degradation of the protein. Degradation by the proteasome is thought to be triggered by polyubiquitination of a target protein. To determine whether AQP1 is ubiquitinated, immunoprecipitation with anti-AQP1 antibodies was performed, and the resultant samples were probed by protein immunoblot for the presence of ubiquitin. Immunoblots demonstrated ubiquitination of AQP1 under control conditions that increased after treatment with proteasome inhibitors (MG132, lactacystin). Exposure of cells to hypertonic medium for as little as 4 h decreased ubiquitination of AQP1, an effect that persisted through 24 h in hypertonic medium. Using metabolic labeling with [35S]methionine, the half-life of AQP1 protein under isotonic conditions was found to be <4 h. AQP1 protein half-life was markedly increased by exposure of cells to hypertonic medium. These observations provide evidence that aquaporins are a target for ubiquitination and proteasome-dependent degradation. Additionally, these studies demonstrate that reduced protein ubiquitination and increased protein stability lead to increased levels of AQP1 expression during hypertonic stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aquaporins (AQPs) are a family of homologous water-channel proteins that can be inserted into epithelial cell plasma membranes either constitutively (AQP1) or by regulated exocytosis following vasopressin stimulation (AQP2). LLC-PK1 porcine renal epithelial cells were stably transfected with cDNA encoding AQP2 (tagged with a C-terminal c-Myc epitope) or rat kidney AQP1 cDNA in an expression vector containing a cytomegalovirus promoter. Immunofluorescence staining revealed that AQP1 was mainly localized to the plasma membrane, whereas AQP2 was predominantly located on intracellular vesicles. After treatment with vasopressin or forskolin for 10 min, AQP2 was relocated to the plasma membrane, indicating that this relocation was induced by cAMP. The location of AQP1 did not change. The basal water permeability of AQP1-transfected cells was 2-fold greater than that of nontransfected cells, whereas the permeability of AQP2-transfected cells increased significantly only after vasopressin treatment. Endocytotic uptake of fluorescein isothiocyanate-coupled dextran was stimulated 6-fold by vasopressin in AQP2-transfected cells but was only slightly increased in wild-type or AQP1-transfected cells. This vasopressin-induced endocytosis was inhibited in low-K+ medium, which selectively affects clathrin-mediated endocytosis. These water channel-transfected cells represent an in vitro system that will allow the detailed dissection of mechanisms involved in the processing, targeting, and trafficking of proteins via constitutive versus regulated intracellular transport pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well-known that the rapid flow of water into and out of cells is controlled by membrane proteins called aquaporins (AQPs). However, the mechanisms that allow cells to quickly respond to a changing osmotic environment are less well established. Using GFP-AQP fusion proteins expressed in HEK293 cells, we demonstrate the reversible manipulation of cellular trafficking of AQP1. AQP1 trafficking was mediated by the tonicity of the cell environment in a specific PKC- and microtubule-dependent manner. This suggests that the increased level of water transport following osmotic change may be due a phosphorylation-dependent increase in the level of AQP1 trafficking resulting in membrane localization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The control of cellular water flow is mediated by the aquaporin (AQP) family of membrane proteins. The family's structural features and the mechanism of selective water passage through the AQP pore are established, but there remains a gap in our knowledge of how water transport is regulated. Two broad possibilities exist. One is controlling the passage of water through the AQP pore, but this has only been observed as a phenomenon in some plant and microbial AQPs. An alternative is controlling the number of AQPs in the cell membrane. Here we describe a novel pathway in mammalian cells whereby a hypotonic stimulus directly induces intracellular calcium elevations, through transient receptor potential channels, that trigger AQP1 translocation. This translocation, which has a direct role in cell volume regulation, occurs within 30s and is dependent on calmodulin activation and phosphorylation of AQP1 at two threonine residues by protein kinase C. This direct mechanism provides a rationale for the changes in water transport that are required in response to constantly-changing local cellular water availability. Moreover, since calcium is a pluripotent and ubiquitous second messenger in biological systems, the discovery of its role in the regulation of AQP translocation has ramifications for diverse physiological and pathophysiological processes, as well as providing an explanation for the rapid regulation of water flow that is necessary for cell homeostasis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aquaporins (AQPs), notably AQP-1 and AQP-9, may contribute to reabsorption of fluid and solute across the epididymis. Ethanol is related to be a toxicant affecting directly or indirectly the epididymis and the sperm motility. This study examined the expression of AQP-1 and AQP-9 in adult epididymis of the UChA and UChB 10% (v/v) ethanol-preferring rats, focusing the ethanol-induced hormonal disturbances upon the regulation of these AQPs. Chronic ethanol intake significantly decreased body weight, while UChA and UChB rats displayed a marked loss of epididymal weights. Both ethanol-consuming animals had a severe reduction of testosterone levels, whereas LH and 17β-estradiol were unchanged. Throughout the epididymis, a strong reaction to AQP-1 was observed in myoid and endothelial cells of the UChB ethanol-preferring rats, differently from a moderate intensity in the initial segment of the UChA rats. In addition, AQP-9 showed a strong immunoreaction in the apical membrane of principal cells at initial segment. In cauda epididymis, the level of AQP-9 was reduced along the microvillus projections in both UChA and UChB rats compared to controls. We conclude that chronic ethanol consumption modulates the androgen levels, thereby modifying the expression pattern of AQP-1 and 9 in the epididymis. © 2011 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chen LM, Zhao J, Musa-Aziz R, Pelletier MF, Drummond IA, Boron WF. Cloning and characterization of a zebrafish homologue of human AQP1: a bifunctional water and gas channel. Am J Physiol Regul Integr Comp Physiol 299: R1163-R1174, 2010. First published August 25, 2010; doi:10.1152/ajpregu.00319.2010.-The mammalian aquaporins AQP1, AQP4, and AQP5 have been shown to function not only as water channels but also as gas channels. Zebrafish have two genes encoding an AQP1 homologue, aqp1a and aqp1b. In the present study, we cloned the cDNA that encodes the zebrafish protein Aqp1a from the 72-h postfertilization (hpf) embryo of Danio rerio, as well as from the swim bladder of the adult. The deduced amino-acid sequence of aqp1a consists of 260 amino acids and is 59% identical to human AQP1. By analyzing the genomic DNA sequence, we identified four exons in the aqp1a gene. By in situ hybridization, aqp1a is expressed transiently in the developing vasculature and in erythrocytes from 16 to 48 h of development. Later, at 72 hpf, aqp1a is expressed in dermal ionocytes and in the swim bladder. Western blot analysis of adult tissues reveals that Aqp1a is most highly expressed in the eye and swim bladder. Xenopus oocytes expressing aqp1a have a channel-dependent (*) osmotic water permeability (P(f)*) that is indistinguishable from that of human AQP1. On the basis of the magnitude of the transient change in surface pH (Delta pHS) that were recorded as the oocytes were exposed to either CO(2) or NH(3), we conclude that zebrafish Aqp1a is permeable to both CO(2) and NH(3). The ratio (Delta pHS*)CO2/P(f)* is about half that of human AQP1, and the ratio (Delta pHS*)NH3/P(f)* is about one-quarter that of human AQP1. Thus, compared with human AQP1, zebrafish Aqp1a has about twice the selectivity for CO(2) over NH(3).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Background: Leptospirosis is a re-emerging zoonosis with protean clinical manifestations. Recently, the importance of pulmonary hemorrhage as a lethal complication of this disease has been recognized. In the present study, five human necropsies of leptospirosis (Weil‘s syndrome) with extensive pulmonary manifestations were analysed, and the antibodies expressed in blood vessels and cells involved in ion and water transport were used, seeking to better understand the pathophysiology of the lung injury associated with this disease. Principal Findings: Prominent vascular damage was present in the lung microcirculation, with decreased CD34 and preserved aquaporin 1 expression. At the periphery and even inside the extensive areas of edema and intraalveolar hemorrhage, enlarged, apparently hypertrophic type I pneumocytes (PI) were detected and interpreted as a non-specific attempt of clearence of the intraalveolar fluid, in which ionic transport, particularly of sodium, plays a predominant role, as suggested by the apparently increased ENaC and aquaporin 5 expression. Connexin 43 was present in most pneumocytes, and in the cytoplasm of the more preserved endothelial cells. The number of type II pneumocytes (PII) was slightly decreased when compared to normal lungs and those of patients with septicemia from other causes, a fact that may contribute to the progressively low PI count, resulting in deficient restoration after damage to the alveolar epithelial integrity and, consequently, a poor outcome of the pulmonary edema and hemorrhage. Conclusions: Pathogenesis of lung injury in human leptospirosis was discussed, and the possibility of primary noninflammatory vascular damage was considered, so far of undefinite etiopathogenesis, as the initial pathological manifestation of the disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous work showed that aquaporin 1 (AQP1), AQP4-M23, and AQP5 each has a characteristic CO(2)/NH(3) and CO(2)/H(2)O permeability ratio. The goal of the present study is to characterize AQPs 0-9, which traffic to the plasma membrane when heterologously expressed in Xenopus oocytes. We use video microscopy to compute osmotic water permeability (P(f)) and microelectrodes to record transient changes in surface pH (ΔpH(S)) caused by CO(2) or NH(3) influx. Subtracting respective values for day-matched, H(2)O-injected control oocytes yields the channel-specific values P(f)* and ΔpH(S)*. We find that P(f)* is significantly >0 for all AQPs tested except AQP6. (ΔpH(S)*)(CO(2)) is significantly >0 for AQP0, AQP1, AQP4-M23, AQP5, AQP6, and AQP9. (ΔpH(S)*)(NH(3)) is >0 for AQP1, AQP3, AQP6, AQP7, AQP8, and AQP9. The ratio (ΔpH(S)*)(CO(2))/P(f)* falls in the sequence AQP6 (∞) > AQP5 > AQP4-M23 > AQP0 ≅ AQP1 ≅ AQP9 > others (0). The ratio (ΔpH(S)*)(NH(3))/P(f)* falls in the sequence AQP6 (∞) > AQP3 ≅ AQP7 ≅ AQP8 ≅ AQP9 > AQP1 > others (0). Finally, the ratio (ΔpH(S)*)(CO(2))/(-ΔpH(S)*)(NH(3)) falls in the sequence AQP0 (∞) ≅ AQP4-M23 ≅ AQP5 > AQP6 > AQP1 > AQP9 > AQP3 (0) ≅ AQP7 ≅ AQP8. The ratio (ΔpH(S)*)(CO(2))/(-ΔpH(S)*)(NH(3)) is indeterminate for both AQP2 and AQP4-M1. In summary, we find that mammalian AQPs exhibit a diverse range of selectivities for CO(2) vs. NH(3) vs. H(2)O. As a consequence, by expressing specific combinations of AQPs, cells could exert considerable control over the movements of each of these three substances

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structural analyses of heterologously expressed mammalian membrane proteins remain a great challenge given that microgram to milligram amounts of correctly folded and highly purified proteins are required. Here, we present a novel method for the expression and affinity purification of recombinant mammalian and in particular human transport proteins in Xenopus laevis frog oocytes. The method was validated for four human and one murine transporter. Negative stain transmission electron microscopy (TEM) and single particle analysis (SPA) of two of these transporters, i.e., the potassium-chloride cotransporter 4 (KCC4) and the aquaporin-1 (AQP1) water channel, revealed the expected quaternary structures within homogeneous preparations, and thus correct protein folding and assembly. This is the first time a cation-chloride cotransporter (SLC12) family member is isolated, and its shape, dimensions, low-resolution structure and oligomeric state determined by TEM, i.e., by a direct method. Finally, we were able to grow 2D crystals of human AQP1. The ability of AQP1 to crystallize was a strong indicator for the structural integrity of the purified recombinant protein. This approach will open the way for the structure determination of many human membrane transporters taking full advantage of the Xenopus laevis oocyte expression system that generally yields robust functional expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The calculation of projection structures (PSs) from Protein Data Bank (PDB)-coordinate files of membrane proteins is not well-established. Reports on such attempts exist but are rare. In addition, the different procedures are barely described and thus difficult if not impossible to reproduce. Here we present a simple, fast and well-documented method for the calculation and visualization of PSs from PDB-coordinate files of membrane proteins: the projection structure visualization (PSV)-method. The PSV-method was successfully validated using the PS of aquaporin-1 (AQP1) from 2D crystals and cryo-transmission electron microscopy, and the PDB-coordinate file of AQP1 determined from 3D crystals and X-ray crystallography. Besides AQP1, which is a relatively rigid protein, we also studied a flexible membrane transport protein, i.e. the L-arginine/agmatine antiporter AdiC. Comparison of PSs calculated from the existing PDB-coordinate files of substrate-free and L-arginine-bound AdiC indicated that conformational changes are detected in projection. Importantly, structural differences were found between the PSV-method calculated PSs of the detergent-solubilized AdiC proteins and the PS from cryo-TEM of membrane-embedded AdiC. These differences are particularly exciting since they may reflect a different conformation of AdiC induced by the lateral pressure in the lipid bilayer.