1000 resultados para APTT test
Resumo:
Since the first description of sulfated polysaccharides from seaweeds, the biological activities of these compounds have been evaluated under different aspects and experimental procedures. Among the broad biological activities presented by seaweed polysaccharides, anticoagulant action appears as a promising function. In this present study we have obtained sulfated polysaccharides from the green seaweed Codium isthmocladium by proteolytic digestion, followed by separation into five fractions (0.3, 0.5, 0.7, 0.9 and 1.2) by sequential acetone precipitation. The chemical analyses have demonstrated that all fractions are composed mainly by sulfated polysaccharides. The anticoagulant activity of these fractions was determined by activated partial thromboplastin time (aPTT) and prothrombin time test (PT) using citrate normal human plasma. None fraction has shown anticoagulant activity by PT test. Furthermore, all of them have shown anticoagulant activity by aPTT test. These results indicated that the molecular targets of these sulfated polysaccharides are mainly in the intrinsic via of the coagulation cascade. Agarose gel electrophoresis in 1,3-diaminopropane acetate buffer, pH 9.0, stained with 0.1% toluidine blue showed the presence of two or three bands in several fractions while the fraction 0.9 showed a single spot. By anion exchange chromatography, the acid polysaccharides from the 0.9 acetone fraction were separated into two new fractions eluted respectively with 2.0 and 3.0 M NaCl. These compounds showed a molecular weight of 6.4 and 7.4 kDa respectively. Chemical analyses and infrared spectroscopy showed that Gal 1 and Gal 2 are sulfated homogalactans and differ one from the other in degree and localization of sulfate groups. aPPT test demonstrated that fractions 2,0 and 3,0M (Gal1 and Gal 2, respectively) have anticoagulant activity. This is the first time that anticoagulant sulfated homogalatans have been isolated from green algae. To prolong the coagulation time to double the baseline value in the aPTT, the required amount of sulfated galactan 1 (6,3mg) was similar to low molecular heparin Clexane®, whereas only 0,7mg of sulfated galactan 2 was needed to obtain the same effect. Sulfated galactan 2 in high doses (250mg) induces platelet aggregation. These results suggest that these galactans from C. isthmocladum have a potential application as an anticoagulant drug
Resumo:
Seaweeds sulfated polysaccharides have been described as having various pharmacological activities. However, nothing is known about the influence of salinity on the structure of sulfated polysaccharides from green seaweed and pharmacological activities they perform. Therefore, the main aim of this study was to evaluate the effect of salinity of seawater on yield and composition of polysaccharides-rich fractions from green seaweed Caulerpa cupressoides var. flabellata, collected in two different salinities beaches of the coast of Rio Grande do Norte, and to verify the influence of salinity on their biological activities. We extracted four sulfated polysaccharides-rich fractions from C. cupressoides collected in Camapum beach (denominated CCM F0.3; F0.5; F1.0; F2.0), which the seawater has higher salinity, and Buzios beach (denominated CCB F0.3; F0.5; F1.0; F2.0). Different from that observed for other seaweeds, the proximate composition of C. cupressoides did not change with increased salinity. Moreover, interestingly, the C. cupresoides have high amounts of protein, greater even than other edible seaweeds. There was no significant difference (p>0.05) between the yield of polysaccharide fractions of CCM and its CCB counterparts, which indicates that salinity does not interfere with the yield of polysaccharide fractions. However, there was a significant difference in the sulfate/sugar ratio of F0.3 (p<0.05) and F0.5 (p<0.01) (CCM F0.3 and CCB F0.5 was higher than those determined for their counterparts), while the sulfate/sugar ratio the F1.0 and F2.0 did not change significantly (p>0.05) with salinity. This result suggested that the observed difference in the sulfate/sugar ratio between the fractions from CCM and CCB, is not merely a function of salinity, but probably also is related to the biological function of these biopolymers in seaweed. In addition, the salinity variation between collection sites did not influence algal monosaccharide composition, eletrophoretic mobility or the infrared spectrum of polysaccharides, demonstrating that the salinity does not change the composition of sulfated polysaccharides of C. cupressoides. There were differences in antioxidant and anticoagulant fractions between CCM and CCB. CCB F0.3 (more sulfated) had higher total antioxidant capacity that CCM F0.3, since the chelating ability the CCM F0.5 was more potent than CCB F0.5 (more sulfated). These data indicate that the activities of sulfated polysaccharides from CCM and CCB depend on the spatial patterns of sulfate groups and that it is unlikely to be merely a charge density effect. C. cupressoides polysaccharides also exhibited anticoagulant activity in the intrinsic (aPTT test) and extrinsic pathway (PT test). CCB F1.0 and CCM F1.0 showed different (p<0,001) aPTT activity, although F0.3 and F0.5 showed no difference (p>0,05) between CCM and CCB, corroborating the fact that the sulfate/sugar ratio is not a determining factor for biological activity, but rather for sulfate distribution along the sugar chain. Moreover, F0.3 and F0.5 activity in aPTT test was similar to that of clexane®, anticoagulant drug. In addition, F0.5 showed PT activity. These results suggest that salinity may have created subtle differences in the structure of sulfated polysaccharides, such as the distribution of sulfate groups, which would cause differences in biological activities between the fractions of the CCM and the CCB
Resumo:
Galactans are polysaccharides sulfated present in the cell wall of red algae. Carrageenans are galactans well known in the food industry as gelling polysaccharides and for induce inflammatory process in rodents as animal model. The extraction of polysaccharides from A. multifida has been carried out by proteolysis and precipitation in different volumes of acetone, which produced three fractions (F1, F2, and FT). Chemical and physical analyses revealed that these fractions are sulfated galactan predominantly. Results of the antioxidant activity assays showed that all of these fractions have antioxidant activity and that was associated with sulfate content of the analysis of reducing power and total antioxidant capacity. However, these fractions were not effective against lipid peroxidation. The fraction FT presented higher activity on the APTT test at 200 μg (> 240 s). The assessment of the hemolytic activity showed that the FT fraction has the best activity, increasing lyses by the complement system to 42.3% (50 μg) (p< 0,001). The fraction FT showed the best yield, anticoagulant and hemolytic activity between the three fractions and therefore it was choose for the in vivo studies. The Inflammation assessment using the FT fraction (50 mg / kg MB) showed that the cellular migration and the IL-6 production increased 670.1% (p< 0,001) and 531.8% (p< 0,001), respectively. These results confirmed its use as an inflammation inducer in animal model. Cytotoxicity assay results showed that all fractions have toxic effects on 3T3 and HeLa cells after exposition of 48 hours, except when 100 μg for both F1 and FT were used. These results arise the discussion whether these polysaccharides it should be used as additive in foods, cosmetics and medicines.
Resumo:
Sulfated polysaccharides (SP) are widely distributed in animals and seaweeds tissues. These polymers have been studied in light of their important pharmacological activities, such as anticoagulant, antioxidant, antitumoral, anti-inflammatory, and antiviral properties. On other hand, SP potential to synthesize biomaterials like as nanoparticules has not yet been explored. In addition, to date, SP have only been found in six plants and all inhabit saline environments. However, the SP pharmacological plant activities have not been carrying out. Furthermore, there are no reports of SP in freshwater plants. Thus, do SP from marine plants show pharmacological activity? Do freshwater plants actually synthesize SP? Is it possible to synthesize nanoparticles using SP from seaweed? In order to understand this question, this Thesis was divided into tree chapters. In the first chapter a sulfated polysaccharide (SPSG) was successfully isolated from marine plant Halodule wrightii. The data presented here showed that the SPSG is a 11 kDa sulfated heterogalactan contains glucose and xylose. Several assays suggested that the SPSG possessed remarkable antioxidant properties in different in vitro assays and an outstanding anticoagulant activity 2.5-fold higher than that of heparin Clexane® in the aPTT test; in the next chapter using different tools such as chemical and histological analyses, energy-dispersive X-ray analysis (EDXA), gel electrophoresis and infra-red spectroscopy we confirm the presence of sulfated polysaccharides in freshwater plants for the first time. Moreover, we also demonstrate that SP extracted from E. crassipes root has potential as an anticoagulant compound; and in last chapter a fucan, a sulfated polysaccharide, extracted from the brown seaweed was chemically modified by grafting hexadecylamine to the polymer hydrophilic backbone. The resulting modified material (SNFuc) formed nanosized particles. The degree of substitution for hydrophobic chains of 1H NMR was approximately 93%. SNFfuc-TBa125 in aqueous media had a mean diameter of 123 nm and zeta potential of -38.3 ± 0.74 mV, measured bydynamic light scattering. Tumor-cell (HepG2, 786, H-S5) proliferation was inhibited by 2.0 43.7% at SNFuc concentrations of 0.05 0.5 mg/ mL and RAEC non-tumor cell line proliferation displayed inhibition of 8.0 22.0%. On the other hand, nanogel improved CHO and RAW non-tumor cell line proliferation in the same concentration range. Flow cytometric analysis revealed that this fucan nanogel inhibited 786 cell proliferation through caspase and caspaseindependent mechanisms. In addition, SNFuc blocks 786 cell passages in the S and G2-M phases of the cell cycle
Resumo:
INTRODUÇÃO: O anticoagulante lúpico é uma imunoglobulina pertencente à família dos anticorpos antifosfolípides. A sua ação in vitro é interferir nos testes de coagulação dependentes de fosfolípides. O tempo de tromboplastina parcial ativada (TTPA) é um teste utilizado como screening na pesquisa do anticoagulante lúpico. Os reagentes utilizados neste teste apresentam grandes variações quanto à sensibilidade. OBJETIVO: Avaliar o desempenho dos reagentes do TTPA e detectar a presença do anticoagulante lúpico através de diferentes testes da coagulação. MATERIAL E MÉTODO: A pesquisa do anticoagulante lúpico foi realizada em 50 amostras plasmáticas de pacientes do sexo feminino através dos testes do TTPA, do tempo de coagulação do caulim (TCC), do tempo de tromboplastina parcial ativada diluída (TTPAd) e do tempo do veneno da víbora de Russel diluído (TVVRd). Três cefalinas comerciais foram avaliadas pelos testes do TTPA e do TTPAd. Na comparação entre os reagentes estudados foi aplicado o cálculo do intervalo de confiança (95%). RESULTADOS: Os três reagentes avaliados apresentaram boa concordância e os métodos utilizados responderam bem à pesquisa do anticoagulante lúpico. DISCUSSÃO E CONCLUSÃO: As três cefalinas comerciais avaliadas podem ser utilizadas na rotina laboratorial para a pesquisa do anticoagulante lúpico.
Resumo:
The sulfated polysaccharides (SP) from the edible red seaweed Gracilaria birdiae were obtained using five different condition extraction (GB1: Water; GB1p: Water/proteolysis; GB1s: Water/sonication; GB1sp: Water/sonication/proteolysis; GB2s: NaOH/sonication; GB2sp: NaOH/sonication/proteolysis. The yield (g) increased in the following order GB2sp>GB1sp>GB1p>GB2s>GB1s>GB1. However, the amount of SP extracted increased in different way GB2sp>GB1p>GB1>GB1sp>GB1s>GB2s. Infrared and electrophoresis analysis showed that all conditions extracted the same SP. In addition, monosaccharide composition showed that ultrasound promotes the extraction of other polysaccharides than SP. In the prothrombin time (PT) test, which evaluates the extrinsic coagulation pathway, none of the samples showed anticoagulant activity. While in the activated partial thromboplastin time (aPTT) test, which evaluates the intrinsic coagulation pathway, all samples showed anticoagulant activity, except GB2s. The aPTT activity decreased in the order of GB1sp>GB2sp>GB1p>GB1>GB1s>GB2s. Total capacity antioxidant (TCA) of the SP was also affected by condition extraction, since GB2s and GB1 showed lower activity in comparison to the other conditions. In conclusion, the conditions of SP extraction influence their biological activities and chemical composition. The data showed NaOH/sonication/proteolysis was the best condition to extract anticoagulant and antioxidant SPs from Gracilaria birdiae.
Resumo:
Since the first description of sulfated polysaccharides from seaweeds, the biological activities of these compounds have been evaluated under different aspects and experimental procedures. Among the broad biological activities presented by seaweed polysaccharides, anticoagulant action appears as a promising function. In this present study we have obtained sulfated polysaccharides from the green seaweed Codium isthmocladium by proteolytic digestion, followed by separation into five fractions (0.3, 0.5, 0.7, 0.9 and 1.2) by sequential acetone precipitation. The chemical analyses have demonstrated that all fractions are composed mainly by sulfated polysaccharides. The anticoagulant activity of these fractions was determined by activated partial thromboplastin time (aPTT) and prothrombin time test (PT) using citrate normal human plasma. None fraction has shown anticoagulant activity by PT test. Furthermore, all of them have shown anticoagulant activity by aPTT test. These results indicated that the molecular targets of these sulfated polysaccharides are mainly in the intrinsic via of the coagulation cascade. Agarose gel electrophoresis in 1,3-diaminopropane acetate buffer, pH 9.0, stained with 0.1% toluidine blue showed the presence of two or three bands in several fractions while the fraction 0.9 showed a single spot. By anion exchange chromatography, the acid polysaccharides from the 0.9 acetone fraction were separated into two new fractions eluted respectively with 2.0 and 3.0 M NaCl. These compounds showed a molecular weight of 6.4 and 7.4 kDa respectively. Chemical analyses and infrared spectroscopy showed that Gal 1 and Gal 2 are sulfated homogalactans and differ one from the other in degree and localization of sulfate groups. aPPT test demonstrated that fractions 2,0 and 3,0M (Gal1 and Gal 2, respectively) have anticoagulant activity. This is the first time that anticoagulant sulfated homogalatans have been isolated from green algae. To prolong the coagulation time to double the baseline value in the aPTT, the required amount of sulfated galactan 1 (6,3mg) was similar to low molecular heparin Clexane®, whereas only 0,7mg of sulfated galactan 2 was needed to obtain the same effect. Sulfated galactan 2 in high doses (250mg) induces platelet aggregation. These results suggest that these galactans from C. isthmocladum have a potential application as an anticoagulant drug
Resumo:
Seaweeds sulfated polysaccharides have been described as having various pharmacological activities. However, nothing is known about the influence of salinity on the structure of sulfated polysaccharides from green seaweed and pharmacological activities they perform. Therefore, the main aim of this study was to evaluate the effect of salinity of seawater on yield and composition of polysaccharides-rich fractions from green seaweed Caulerpa cupressoides var. flabellata, collected in two different salinities beaches of the coast of Rio Grande do Norte, and to verify the influence of salinity on their biological activities. We extracted four sulfated polysaccharides-rich fractions from C. cupressoides collected in Camapum beach (denominated CCM F0.3; F0.5; F1.0; F2.0), which the seawater has higher salinity, and Buzios beach (denominated CCB F0.3; F0.5; F1.0; F2.0). Different from that observed for other seaweeds, the proximate composition of C. cupressoides did not change with increased salinity. Moreover, interestingly, the C. cupresoides have high amounts of protein, greater even than other edible seaweeds. There was no significant difference (p>0.05) between the yield of polysaccharide fractions of CCM and its CCB counterparts, which indicates that salinity does not interfere with the yield of polysaccharide fractions. However, there was a significant difference in the sulfate/sugar ratio of F0.3 (p<0.05) and F0.5 (p<0.01) (CCM F0.3 and CCB F0.5 was higher than those determined for their counterparts), while the sulfate/sugar ratio the F1.0 and F2.0 did not change significantly (p>0.05) with salinity. This result suggested that the observed difference in the sulfate/sugar ratio between the fractions from CCM and CCB, is not merely a function of salinity, but probably also is related to the biological function of these biopolymers in seaweed. In addition, the salinity variation between collection sites did not influence algal monosaccharide composition, eletrophoretic mobility or the infrared spectrum of polysaccharides, demonstrating that the salinity does not change the composition of sulfated polysaccharides of C. cupressoides. There were differences in antioxidant and anticoagulant fractions between CCM and CCB. CCB F0.3 (more sulfated) had higher total antioxidant capacity that CCM F0.3, since the chelating ability the CCM F0.5 was more potent than CCB F0.5 (more sulfated). These data indicate that the activities of sulfated polysaccharides from CCM and CCB depend on the spatial patterns of sulfate groups and that it is unlikely to be merely a charge density effect. C. cupressoides polysaccharides also exhibited anticoagulant activity in the intrinsic (aPTT test) and extrinsic pathway (PT test). CCB F1.0 and CCM F1.0 showed different (p<0,001) aPTT activity, although F0.3 and F0.5 showed no difference (p>0,05) between CCM and CCB, corroborating the fact that the sulfate/sugar ratio is not a determining factor for biological activity, but rather for sulfate distribution along the sugar chain. Moreover, F0.3 and F0.5 activity in aPTT test was similar to that of clexane®, anticoagulant drug. In addition, F0.5 showed PT activity. These results suggest that salinity may have created subtle differences in the structure of sulfated polysaccharides, such as the distribution of sulfate groups, which would cause differences in biological activities between the fractions of the CCM and the CCB
Resumo:
Galactans are polysaccharides sulfated present in the cell wall of red algae. Carrageenans are galactans well known in the food industry as gelling polysaccharides and for induce inflammatory process in rodents as animal model. The extraction of polysaccharides from A. multifida has been carried out by proteolysis and precipitation in different volumes of acetone, which produced three fractions (F1, F2, and FT). Chemical and physical analyses revealed that these fractions are sulfated galactan predominantly. Results of the antioxidant activity assays showed that all of these fractions have antioxidant activity and that was associated with sulfate content of the analysis of reducing power and total antioxidant capacity. However, these fractions were not effective against lipid peroxidation. The fraction FT presented higher activity on the APTT test at 200 μg (> 240 s). The assessment of the hemolytic activity showed that the FT fraction has the best activity, increasing lyses by the complement system to 42.3% (50 μg) (p< 0,001). The fraction FT showed the best yield, anticoagulant and hemolytic activity between the three fractions and therefore it was choose for the in vivo studies. The Inflammation assessment using the FT fraction (50 mg / kg MB) showed that the cellular migration and the IL-6 production increased 670.1% (p< 0,001) and 531.8% (p< 0,001), respectively. These results confirmed its use as an inflammation inducer in animal model. Cytotoxicity assay results showed that all fractions have toxic effects on 3T3 and HeLa cells after exposition of 48 hours, except when 100 μg for both F1 and FT were used. These results arise the discussion whether these polysaccharides it should be used as additive in foods, cosmetics and medicines.
Resumo:
Since the first description of sulfated polysaccharides from seaweeds, the biological activities of these compounds have been evaluated under different aspects and experimental procedures. Among the broad biological activities presented by seaweed polysaccharides, anticoagulant action appears as a promising function. In this present study we have obtained sulfated polysaccharides from the green seaweed Codium isthmocladium by proteolytic digestion, followed by separation into five fractions (0.3, 0.5, 0.7, 0.9 and 1.2) by sequential acetone precipitation. The chemical analyses have demonstrated that all fractions are composed mainly by sulfated polysaccharides. The anticoagulant activity of these fractions was determined by activated partial thromboplastin time (aPTT) and prothrombin time test (PT) using citrate normal human plasma. None fraction has shown anticoagulant activity by PT test. Furthermore, all of them have shown anticoagulant activity by aPTT test. These results indicated that the molecular targets of these sulfated polysaccharides are mainly in the intrinsic via of the coagulation cascade. Agarose gel electrophoresis in 1,3-diaminopropane acetate buffer, pH 9.0, stained with 0.1% toluidine blue showed the presence of two or three bands in several fractions while the fraction 0.9 showed a single spot. By anion exchange chromatography, the acid polysaccharides from the 0.9 acetone fraction were separated into two new fractions eluted respectively with 2.0 and 3.0 M NaCl. These compounds showed a molecular weight of 6.4 and 7.4 kDa respectively. Chemical analyses and infrared spectroscopy showed that Gal 1 and Gal 2 are sulfated homogalactans and differ one from the other in degree and localization of sulfate groups. aPPT test demonstrated that fractions 2,0 and 3,0M (Gal1 and Gal 2, respectively) have anticoagulant activity. This is the first time that anticoagulant sulfated homogalatans have been isolated from green algae. To prolong the coagulation time to double the baseline value in the aPTT, the required amount of sulfated galactan 1 (6,3mg) was similar to low molecular heparin Clexane®, whereas only 0,7mg of sulfated galactan 2 was needed to obtain the same effect. Sulfated galactan 2 in high doses (250mg) induces platelet aggregation. These results suggest that these galactans from C. isthmocladum have a potential application as an anticoagulant drug
Resumo:
The aim of the study was to develop a culturally adapted translation of the 12-item smell identification test from Sniffin' Sticks (SS-12) for the Estonian population in order to help diagnose Parkinson's disease (PD). A standard translation of the SS-12 was created and 150 healthy Estonians were questioned about the smells used as response options in the test. Unfamiliar smells were replaced by culturally familiar options. The adapted SS-12 was applied to 70 controls in all age groups, and thereafter to 50 PD patients and 50 age- and sex-matched controls. 14 response options from 48 used in the SS-12 were replaced with familiar smells in an adapted version, in which the mean rate of correct response was 87% (range 73-99) compared to 83% with the literal translation (range 50-98). In PD patients, the average adapted SS-12 score (5.4/12) was significantly lower than in controls (average score 8.9/12), p < 0.0001. A multiple linear regression using the score in the SS-12 as the outcome measure showed that diagnosis and age independently influenced the result of the SS-12. A logistic regression using the SS-12 and age as covariates showed that the SS-12 (but not age) correctly classified 79.0% of subjects into the PD and control category, using a cut-off of <7 gave a sensitivity of 76% and specificity of 86% for the diagnosis of PD. The developed SS-12 cultural adaption is appropriate for testing olfaction in Estonia for the purpose of PD diagnosis.
Resumo:
to investigate the pulmonary response to exercise of non-morbidly obese adolescents, considering the gender. a prospective cross-sectional study was conducted with 92 adolescents (47 obese and 45 eutrophic), divided in four groups according to obesity and gender. Anthropometric parameters, pulmonary function (spirometry and oxygen saturation [SatO2]), heart rate (HR), blood pressure (BP), respiratory rate (RR), and respiratory muscle strength were measured. Pulmonary function parameters were measured before, during, and after the exercise test. BP and HR were higher in obese individuals during the exercise test (p = 0.0001). SatO2 values decreased during exercise in obese adolescents (p = 0.0001). Obese males had higher levels of maximum inspiratory and expiratory pressures (p = 0.0002) when compared to obese and eutrophic females. Obese males showed lower values of maximum voluntary ventilation, forced vital capacity, and forced expiratory volume in the first second when compared to eutrophic males, before and after exercise (p = 0.0005). Obese females had greater inspiratory capacity compared to eutrophic females (p = 0.0001). Expiratory reserve volume was lower in obese subjects when compared to controls (p ≤ 0,05). obese adolescents presented changes in pulmonary function at rest and these changes remained present during exercise. The spirometric and cardiorespiratory values were different in the four study groups. The present data demonstrated that, in spite of differences in lung growth, the model of fat distribution alters pulmonary function differently in obese female and male adolescents.
Resumo:
To assess binocular detection grating acuity using the LEA GRATINGS test to establish age-related norms in healthy infants during their first 3 months of life. In this prospective, longitudinal study of healthy infants with clear red reflex at birth, responses to gratings were measured at 1, 2, and 3 months of age using LEA gratings at a distance of 28 cm. The results were recorded as detection grating acuity values, which were arranged in frequency tables and converted to a one-octave scale for statistical analysis. For the repeated measurements, analysis of variance (ANOVA) was used to compare the detection grating acuity results between ages. A total of 133 infants were included. The binocular responses to gratings showed development toward higher mean values and spatial frequencies, ranging from 0.55 ± 0.70 cycles per degree (cpd), or 1.74 ± 0.21 logMAR, in month 1 to 3.11 ± 0.54 cpd, or 0.98 ± 0.16 logMAR, in month 3. Repeated ANOVA indicated differences among grating acuity values in the three age groups. The LEA GRATINGS test allowed assessment of detection grating acuity and its development in a cohort of healthy infants during their first 3 months of life.
Resumo:
This study sought to analyse the behaviour of the average spinal posture using a novel investigative procedure in a maximal incremental effort test performed on a treadmill. Spine motion was collected via stereo-photogrammetric analysis in thirteen amateur athletes. At each time percentage of the gait cycle, the reconstructed spine points were projected onto the sagittal and frontal planes of the trunk. On each plane, a polynomial was fitted to the data, and the two-dimensional geometric curvature along the longitudinal axis of the trunk was calculated to quantify the geometric shape of the spine. The average posture presented at the gait cycle defined the spine Neutral Curve. This method enabled the lateral deviations, lordosis, and kyphosis of the spine to be quantified noninvasively and in detail. The similarity between each two volunteers was a maximum of 19% on the sagittal plane and 13% on the frontal (p<0.01). The data collected in this study can be considered preliminary evidence that there are subject-specific characteristics in spinal curvatures during running. Changes induced by increases in speed were not sufficient for the Neutral Curve to lose its individual characteristics, instead behaving like a postural signature. The data showed the descriptive capability of a new method to analyse spinal postures during locomotion; however, additional studies, and with larger sample sizes, are necessary for extracting more general information from this novel methodology.
Resumo:
Objective To assess the neurodevelopmental functions (cognition, language and motor function) of survivors of twin-twin transfusion syndrome (TTTS). Method Observational cross-sectional study of a total of 67 monochorionic diamniotic twins who underwent fetoscopic laser coagulation (FLC) for treatment of TTTS. The study was conducted at the Center for Investigation in Pediatrics (CIPED), Universidade Estadual de Campinas. Ages ranged from one month and four days to two years four months. Bayley Scales of Infant and Toddler Development Screening Test-III, were used for evaluation. Results Most children reached the competent category and were classified as having appropriate performance. The preterm children scored worse than term infants for gross motor subtest (p = 0.036). Conclusion The majority of children reached the expected development according to their age. Despite the good neurodevelopment, children classified at risk should be monitored for development throughout childhood.