998 resultados para AP site


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abasic sites (AP-sites) are frequent DNA lesions, arising by spontaneous base hydrolysis or as intermediates of base excision repair (BER). The hemiacetal at the anomeric centre renders them chemically reactive, which presents a challenge to biochemical and structural investigation. Chemically more stable AP-site analogues have been used to avoid spontaneous decay, but these do not fully recapitulate the features of natural AP-sites. With its 3′-phosphate replaced by methylene, the abasic site analogue 3CAPS was suggested to circumvent some of these limitations. Here, we evaluated the properties of 3CAPS in biochemical BER assays with mammalian proteins. 3CAPS-containing DNA substrates were processed by APE1, albeit with comparably poor efficiency. APE1-cleaved 3CAPS can be extended by DNA polymerase β but repaired only by strand displacement as the 5′-deoxyribophosphate (dRP) cannot be removed. DNA glycosylases physically and functionally interact with 3CAPS substrates, underlining its structural integrity and biochemical reactivity. The AP lyase activity of bifunctional DNA glycosylases (NTH1, NEIL1, FPG), however, was fully inhibited. Notably, 3CAPS-containing DNA also effectively inhibited the activity of bifunctional glycosylases on authentic substrates. Hence, the chemically stable 3CAPS with its preserved hemiacetal functionality is a potent tool for BER research and a potential inhibitor of bifunctional DNA glycosylases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The generation of reactive oxygen species in the cell provokes, among other lesions, the formation of 8-oxo-7,8-dihydroguanine (8-oxoG) in DNA. Due to mispairing with adenine during replication, 8-oxoG is highly mutagenic. To minimise the mutagenic potential of this oxidised purine, human cells have a specific 8-oxoG DNA glycosylase/AP lyase (hOGG1) that initiates the base excision repair (BER) of 8-oxoG. We show here that in vitro this first enzyme of the BER pathway is relatively inefficient because of a high affinity for the product of the reaction it catalyses (half-life of the complex is >2 h), leading to a lack of hOGG1 turnover. However, the glycosylase activity of hOGG1 is stimulated by the major human AP endonuclease, HAP1 (APE1), the enzyme that performs the subsequent step in BER, as well as by a catalytically inactive mutant (HAP1-D210N). In the presence of HAP1, the AP sites generated by the hOGG1 DNA glycosylase can be occupied by the endonuclease, avoiding the re-association of hOGG1. Moreover, the glycosylase has a higher affinity for a non-cleaved AP site than for the cleaved DNA product generated by HAP1. This would shift the equilibrium towards the free glycosylase, making it available to initiate new catalytic cycles. In contrast, HAP1 does not affect the AP lyase activity of hOGG1. This stimulation of only the hOGG1 glycosylase reaction accentuates the uncoupling of its glycosylase and AP lyase activities. These data indicate that, in the presence of HAP1, the BER of 8-oxoG residues can be highly efficient by bypassing the AP lyase activity of hOGG1 and thus excluding a potentially rate limiting step.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Some topoisomerase inhibitors trap covalent topoisomerase–DNA complexes as topoisomerase–drug–DNA ternary complexes. Ternary complex formation results in inhibition of DNA replication and generation of permanent double-strand breaks. Recent demonstrations of the stimulation of covalent topoisomerase–DNA complex formation by DNA lesions suggest that DNA damage may act as an endogenous topoisomerase poison. We have investigated the effects of abasic (AP) sites on topoisomerase IV (Topo IV). AP sites can stimulate the formation of covalent Topo IV–DNA complexes when they are located either within the 4 base overhang generated by DNA scission or immediately 5′ to the point of scission (the –1 position). Thus, the AP site acts as a position-specific, endogenous topoisomerase poison. Both EDTA and salt can reverse covalent Topo IV–DNA complexes induced by AP sites located within the 4 base overhang. Interestingly, an AP site at the –1 position inhibits EDTA-mediated reversal of formation of the covalent Topo IV–DNA complex. Furthermore, we find that, unlike quinolone-induced covalent Topo IV–DNA complexes, AP site-induced covalent Topo IV–DNA complexes do not inhibit the helicase activities of the DnaB and T7 Gene 4 proteins. These results suggest that the AP site-induced poisoning of Topo IV does not arrest replication fork progression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Uracil excision repair is ubiquitous in all domains of life and initiated by uracil DNA glycosylases (UDGs) which excise the promutagenic base, uracil, from DNA to leave behind an abasic site (AP-site). Repair of the resulting AP-sites requires an AP-endonuclease, a DNA polymerase, and a DNA ligase whose combined activities result in either short-patch or long-patch repair. Mycobacterium tuberculosis, the causative agent of tuberculosis, has an increased risk of accumulating uracils because of its G + C-rich genome, and its niche inside host macrophages where it is exposed to reactive nitrogen and oxygen species, two major causes of cytosine deamination (to uracil) in DNA. In vitro assays to study DNA repair in this important human pathogen are limited. To study uracil excision repair in mycobacteria, we have established assay conditions using cell-free extracts of M. tuberculosis and M. smegmatis (a fast-growing mycobacterium) and oligomer or plasmid DNA substrates. We show that in mycobacteria, uracil excision repair is completed primarily via long-patch repair. In addition, we show that M. tuberculosis UdgB, a newly characterized family 5 UDG, substitutes for the highly conserved family 1 UDG, Ung, thereby suggesting that UdgB might function as backup enzyme for uracil excision repair in mycobacteria. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les sites apuriniques/apyrimidinique (AP) représentent une forme de dommage à l’ADN hautement mutagène et ce type de dommage peut survenir spontanément ou être induit par une variété d’agents. Afin de préserver la stabilité génomique, deux familles d’endonucléases de type AP, endo-IV et exo-III, sont nécessaires pour contrecarrer les effets mutagènes des sites AP. Malgré l’identification de membres des deux familles dans plusieurs organismes unicellulaire tels que E.coli et S. cerevisiae, aucun membre de la famille endo-IV n’a été identifié chez les organismes multicellulaires à l’exception de C. elegans et de C. briggsae. Nous avons donc décidé d’investiguer l’importance biologique de APN-1 chez C. elegans par l’utilisation d’une approche de knockdown du gène. Dans notre étude, nous avons montré que le knockdown du gène apn-1 chez C. elegans, en utilisant des ARN d’interférence (ARNi), cause une accumulation de mutations spontanées et induites par des drogues résultant en un délai de l’éclosion des œufs ainsi que par une diminution de la survie et de la longévité des vers adultes. De plus, nous avons montré que cette accumulation de mutations mène à un délai dans la progression du cycle cellulaire durant l’embryogénèse, représentant possiblement une explication du délai dans l’éclosion des œufs. Nous avons montré qu’il y avait une augmentation du niveau de mutations dans la gorge des vers, sans toutefois pouvoir confirmer la distribution de APN-1 qui possède une étiquette GFP. Les animaux transgéniques APN-1-GFP n’exprimaient pas suffisamment de la protéine de fusion pour permettre une visualisation à l’aide d’un microscope à fluorescence, mais la protéine a été détectée par immunobuvardage de type western. Les animaux transgéniques APN-1-GFP étaient instables et avaient des phénotypes concordants avec les défauts génétiques. En conclusion, il semble que C. elegans aie évolué afin de retenir un niveau de base de APN-1 jouant ainsi un rôle versatile afin de maintenir l’intégrité génétique d’autant plus que cet organisme semble manquer plusieurs enzymes de la voie de réparation par excision de base.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Repair of both normal and reduced AP sites is activated by AP endonuclease, which recognizes and cleaves a phosphodiester bond 5' to the AP site. For a short period of time an incised AP site is occupied by poly(ADP-ribose) polymerase and then DNA polymerase beta adds one nucleotide into the repair gap and simultaneously removes the 5'-sugar phosphate. Finally, the DNA ligase III/XRCC1 complex accomplishes repair by sealing disrupted DNA ends. However, long-patch BER pathway, which is involved in the removal of reduced abasic sites, requires further DNA synthesis resulting in strand displacement and the generation of a damage-containing flap that is later removed by the flap endonuclease. Strand-displacement DNA synthesis is accomplished by DNA polymerase delta/epsilon and DNA ligase I restores DNA integrity. DNA synthesis by DNA polymerase delta/epsilon is dependent on proliferating cell nuclear antigen, which also stimulates the DNA ligase I and flap endonuclease. These repair events are supported by multiple protein-protein interactions. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clustered damages are formed in DNA by ionising radiation and radiomimetic anticancer agents and are thought to be biologically severe. 7,8-dihydro-8-oxoguanine (8-oxoG), a major DNA damage resulting from oxidative attack, is highly mutagenic leading to a high level of G·C→T·A transversions if not previously excised by OGG1 DNA glycosylase/AP lyase proteins in eukaryotes. However, 8-oxoG within clustered DNA damage may present a challenge to the repair machinery of the cell. The ability of yeast OGG1 to excise 8-oxoG was determined when another type of damage [dihydrothymine, uracil, 8-oxoG, abasic (AP) site or various types of single-strand breaks (SSBs)] is present on the complementary strand 1, 3 or 5 bases 5′ or 3′ opposite to 8-oxoG. Base damages have little or no influence on the excision of 8-oxoG by yeast OGG1 (yOGG1) whereas an AP site has a strong inhibitory effect. Various types of SSBs, obtained using either oligonucleotides with 3′- and 5′-phosphate termini around a gap or through conversion of an AP site with either endonuclease III or human AP endonuclease 1, strongly inhibit excision of 8-oxoG by yOGG1. Therefore, this large inhibitory effect of an AP site or a SSB may minimise the probability of formation of a double-strand break in the processing of 8-oxoG within clustered damages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previously we have characterized type IB DNA topoisomerase V (topo V) in the hyperthermophile Methanopyrus kandleri. The enzyme has a powerful topoisomerase activity and is abundant in M. kandleri. Here we report two characterizations of topo V. First, we found that its N-terminal domain has sequence homology with both eukaryotic type IB topoisomerases and the integrase family of tyrosine recombinases. The C-terminal part of the sequence includes 12 repeats, each repeat consisting of two similar but distinct helix-hairpin-helix motifs; the same arrangement is seen in recombination protein RuvA and mammalian DNA polymerase β. Second, on the basis of sequence homology between topo V and polymerase β, we predict and demonstrate that topo V possesses apurinic/apyrimidinic (AP) site-processing activities that are important in base excision DNA repair: (i) it incises the phosphodiester backbone at the AP site, and (ii) at the AP endonuclease cleaved AP site, it removes the 5′ 2-deoxyribose 5-phosphate moiety so that a single-nucleotide gap with a 3′-hydroxyl and 5′-phosphate can be filled by a DNA polymerase. Topo V is thus the prototype for a new subfamily of type IB topoisomerases and is the first example of a topoisomerase with associated DNA repair activities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of Fos and Jun binding on the structure of the AP-1 recognition site is controversial. Results from phasing analysis and phase-sensitive detection studies of DNA bending by Fos and Jun have led to opposite conclusions. The differences between these assays, the length of the spacer between two bends and the length of the sequences flanking the bends, are investigated here using intrinsic DNA bend standards. Both an increase in the spacer length as well as a decrease in the length of flanking sequences resulted in a reduction in the phase-dependent variation in electrophoretic mobilities. Probes with a wide separation between the bends and short flanking sequences, such as those used in the phase-sensitive detection studies, displayed no phase-dependent mobility variation. This shape-dependent variation in electrophoretic mobilities was reproduced by complexes formed by truncated Fos and Jun. Results from ligase-catalyzed cyclization experiments have been interpreted to indicate the absence of DNA bending in the Fos-Jun-AP-1 complex. However, truncated Fos and Jun can alter the relative rates of inter- and intramolecular ligation through mechanisms unrelated to DNA bending, confounding the interpretation of cyclization data. The analogous phase- and shape-dependence of the electrophoretic mobilities of the Fos-Jun-AP-1 complex and an intrinsic DNA bend confirm that Fos and Jun bend DNA, which may contribute to their functions in transcription regulation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have used a solution-based DNA cyclization assay and a gel-phasing method to show that contrary to previous reports [Kerppola, T. K. & Curran, T. (1991) Cell 66, 317-326], basic region leucine zipper proteins Fos and Jun do not significantly bend their AP-1 recognition site. We have constructed two sets of DNA constructs that contain the 7-bp 5'-TGACTCA-3' AP-1 binding site, from either the yeast or the human collagenase gene, which is well separated from and phased by 3-4 helical turns against an A tract-directed bend. The cyclization probabilities of DNAs with altered phasings are not significantly affected by Fos-Jun binding. Similarly, Fos-Jun and Jun-Jun bound to differently phased DNA constructs show insignificant variations in gel mobilities. Both these methods independently indicate that Fos and Jun bend their AP-1 target site by <5 degrees, an observation that has important implications in understanding their mechanism of transcriptional regulation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Total hip arthroplasty (THA) is a commonly performed procedure and numbers are increasing with ageing populations. One of the most serious complications in THA are surgical site infections (SSIs), caused by pathogens entering the wound during the procedure. SSIs are associated with a substantial burden for health services, increased mortality and reduced functional outcomes in patients. Numerous approaches to preventing these infections exist but there is no gold standard in practice and the cost-effectiveness of alternate strategies is largely unknown. Objectives The aim of this project was to evaluate the cost-effectiveness of strategies claiming to reduce deep surgical site infections following total hip arthroplasty in Australia. The objectives were: 1. Identification of competing strategies or combinations of strategies that are clinically relevant to the control of SSI related to hip arthroplasty 2. Evidence synthesis and pooling of results to assess the volume and quality of evidence claiming to reduce the risk of SSI following total hip arthroplasty 3. Construction of an economic decision model incorporating cost and health outcomes for each of the identified strategies 4. Quantification of the effect of uncertainty in the model 5. Assessment of the value of perfect information among model parameters to inform future data collection Methods The literature relating to SSI in THA was reviewed, in particular to establish definitions of these concepts, understand mechanisms of aetiology and microbiology, risk factors, diagnosis and consequences as well as to give an overview of existing infection prevention measures. Published economic evaluations on this topic were also reviewed and limitations for Australian decision-makers identified. A Markov state-transition model was developed for the Australian context and subsequently validated by clinicians. The model was designed to capture key events related to deep SSI occurring within the first 12 months following primary THA. Relevant infection prevention measures were selected by reviewing clinical guideline recommendations combined with expert elicitation. Strategies selected for evaluation were the routine use of pre-operative antibiotic prophylaxis (AP) versus no use of antibiotic prophylaxis (No AP) or in combination with antibiotic-impregnated cement (AP & ABC) or laminar air operating rooms (AP & LOR). The best available evidence for clinical effect size and utility parameters was harvested from the medical literature using reproducible methods. Queensland hospital data were extracted to inform patients’ transitions between model health states and related costs captured in assigned treatment codes. Costs related to infection prevention were derived from reliable hospital records and expert opinion. Uncertainty of model input parameters was explored in probabilistic sensitivity analyses and scenario analyses and the value of perfect information was estimated. Results The cost-effectiveness analysis was performed from a health services perspective using a hypothetical cohort of 30,000 THA patients aged 65 years. The baseline rate of deep SSI was 0.96% within one year of a primary THA. The routine use of antibiotic prophylaxis (AP) was highly cost-effective and resulted in cost savings of over $1.6m whilst generating an extra 163 QALYs (without consideration of uncertainty). Deterministic and probabilistic analysis (considering uncertainty) identified antibiotic prophylaxis combined with antibiotic-impregnated cement (AP & ABC) to be the most cost-effective strategy. Using AP & ABC generated the highest net monetary benefit (NMB) and an incremental $3.1m NMB compared to only using antibiotic prophylaxis. There was a very low error probability that this strategy might not have the largest NMB (<5%). Not using antibiotic prophylaxis (No AP) or using both antibiotic prophylaxis combined with laminar air operating rooms (AP & LOR) resulted in worse health outcomes and higher costs. Sensitivity analyses showed that the model was sensitive to the initial cohort starting age and the additional costs of ABC but the best strategy did not change, even for extreme values. The cost-effectiveness improved for a higher proportion of cemented primary THAs and higher baseline rates of deep SSI. The value of perfect information indicated that no additional research is required to support the model conclusions. Conclusions Preventing deep SSI with antibiotic prophylaxis and antibiotic-impregnated cement has shown to improve health outcomes among hospitalised patients, save lives and enhance resource allocation. By implementing a more beneficial infection control strategy, scarce health care resources can be used more efficiently to the benefit of all members of society. The results of this project provide Australian policy makers with key information about how to efficiently manage risks of infection in THA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Surgical site infection (SSI) is associated with substantial costs for health services, reduced quality of life, and functional outcomes. The aim of this study was to evaluate the cost-effectiveness of strategies claiming to reduce the risk of SSI in hip arthroplasty in Australia. Methods: Baseline use of antibiotic prophylaxis (AP) was compared with no antibiotic prophylaxis (no AP), antibiotic-impregnated cement (AP þ ABC), and laminar air operating rooms (AP þ LOR). A Markov model was used to simulate long-term health and cost outcomes of a hypothetical cohort of 30,000 total hip arthroplasty patients from a health services perspective. Model parameters were informed by the best available evidence. Uncertainty was explored in probabilistic sensitivity and scenario analyses. Results: Stopping the routine use of AP resulted in over Australian dollars (AUD) $1.5 million extra costs and a loss of 163 quality-adjusted life years (QALYs). Using antibiotic cement in addition to AP (AP þ ABC)generated an extra 32 QALYs while saving over AUD $123,000. The use of laminar air operating rooms combined with routine AP (AP þ LOR) resulted in an AUD $4.59 million cost increase and 127 QALYs lost compared with the baseline comparator. Conclusion: Preventing deep SSI with antibiotic prophylaxis and antibiotic-impregnated cement has shown to improve health outcomes among hospitalized patients, save lives, and enhance resource allocation. Based on this evidence, the use of laminar air operating rooms is not recommended.