997 resultados para ANTIMICROBIAL PEPTIDE P34
Resumo:
The antimicrobial peptide indolicidin (IND) and the mutant CP10A in hydrated micelles were studied using molecular dynamics simulations in order to observe whether the molecular dynamics and experimental data could be sufficiently correlated and a detailed description of the interaction of the antimicrobial peptides with a model of the membrane provided by a hydrated micelle system could be obtained. In agreement with the experiments, the simulations showed that the peptides are located near the surface of the micelles. Peptide insertions agree with available experimental data, showing deeper insertion of the mutant compared with the peptide IND. Major insertion into the hydrophobic core of the micelle by all tryptophan and mutated residues of CP10A in relation to IND was observed. The charged residues of the terminus regions of both peptides present similar behavior, indicating that the major differences in the interactions with the micelles of the peptides IND and CP10A occur in the case of the hydrophobic residues.
Resumo:
An antimicrobial peptide produced by a bacterium isolated from the effluent pond of a bovine abattoir was purified and characterized. The strain was characterized by biochemical profiling and 16S rDNA sequencing as Pseudomonas sp. The antimicrobial peptide was purified by ammonium sulfate precipitation, gel filtration, and ion exchange chromatography. Direct activity on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was observed. A major band on SDS-PAGE suggested that the antimicrobial peptide has a molecular mass of about 30 kDa. The substance was inhibitory to a broad range of indicator strains, including pathogenic and food spoilage bacteria such as Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, among other. The partially purified antimicrobial substance remained active over a wide temperature range and was resistant to all proteases tested. This substance showed different properties than other antimicrobials from Pseudomonas species, suggesting a novel antimicrobial peptide was characterized.
Resumo:
MiAMP1 is a low-molecular-weight, cysteine-rich, antimicrobial peptide isolated from the nut kernel of Macadamia integrifolia. A DNA sequence encoding MiAMP1 with an additional ATG: start codon was cloned into a modified pET vector under the control of the T7 RNA polymerase promoter. The pET vector was cotransformed together with the vector pSB161, which expresses a rare arginine tRNA. The peptide was readily isolated in high yield from the insoluble fraction of the Escherichia coil extract. The purified peptide was shown to have an identical molecular weight to the native peptide by mass spectroscopy indicating that the N-terminal methionine had been cleaved. Analysis by NMR spectroscopy indicated that the refolded recombinant peptide had a similar overall three-dimensional structure to that of the native peptide. The peptide inhibited the growth of phytopathogenic fungi in vitro in a similar manner to the native peptide. To our knowledge, MiAMP1 is the first antimicrobial peptide from plants to be functionally expressed in E. coil. This will permit a detailed structure-function analysis of the peptide and studies of its mode of action on phytopathogens. (C) 1999 Academic Press.
Resumo:
This article addresses the interactions of the synthetic antimicrobial peptide dermaseptin 01 (GLWSTIKQKGKEAAIAAA-KAAGQAALGAL-NH(2), DS 01) with phospholipid (PL) monolayers comprising (i) a lipid-rich extract of Leishmania amazonensis (LRE-La), (ii) zwitterionic PL (dipalmitoylphosphatidylcholine, DPPC), and (iii) negatively charged PL (dipalmitoylphosphatidylglycerol, DPPG). The degree of interaction of DS 01 with the different biomembrane models was quantified from equilibrium and dynamic liquid-air interface parameters. At low peptide concentrations, interactions between DS 01 and zwitterionic PL, as well as with the LRE-La monolayers were very weak, whereas with negatively charged PLs the interactions were stronger. For peptide concentrations above 1 mu g/ml, a considerable expansion of negatively charged monolayers occurred. In the case of DPPC, it was possible to return to the original lipid area in the condensed phase, suggesting that the peptide was expelled from the monolayer. However, in the case of DPPG, the average area per lipid molecule in the presence of DS 01 was higher than pure PLs even at high surface pressures, suggesting that at least part of DS 01 remained incorporated in the monolayer. For the LRE-La monolayers, DS 01 also remained in the monolayer. This is the first report on the antiparasitic activity of AMPs using Langmuir monolayers of a natural lipid extract from L. amazonensis. Copyright (C) 2011 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
In this work the interaction of the antimicrobial peptide indolicidin (IND) and its mutants CP10A and CP11 with a eukaryotic membrane model was examined by molecular dynamics simulations. The aim was to analyse the behaviour of these antimicrobial peptides when they interact with a eukaryotic modelled membrane, thereby obtaining atomic detailed observations that are not experimentally available. In the simulations, the widely studied dipalmitoylphosphatidylcholine hydrated bilayer was used as a eukaryotic membrane model. In agreement with experimental observations, the peptides IND, CP10A, and CP11 insert into the bilayer differently; the peptides that insert more deeply present the major hemolytic activities. The hydrophobic residues are responsible for the insertion, but some Trp residues of the peptides remain at the bilayer/water interface because they interact with the bilayer choline groups by cation-pi interactions that should be important for recognition of eukaryotic membrane by the three studied peptides.
Resumo:
Recently we have shown that BhSGAMP-1 is a developmentally regulated reiterated gene that encodes an antimicrobial peptide (AMP) and is expressed exclusively in the salivary glands, at the end of the larval stage. We show, for the first time, that a gene for an AMP is directly activated by 20-OH ecdysone. This control probably involves the participation of short-lived repressor(s). We also found that the promoter of BhSGAMP-1 is not equipped with elements that respond to infection, provoked by the injection of microorganisms, in the salivary glands or in the fat body. We produced polyclonal antibodies against the synthetic peptide and found that the BhSGAMP-1 peptide is secreted in the saliva. The BhSGAMP-1 gene was also activated during the third larval molt. These facts confirm our hypothesis that this preventive system of defense was selected to produce an environment free of harmful microorganisms in the insect`s immediate vicinity, during molts. genesis 47:847-857, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
The novel antimicrobial peptide MiAMP1, originally isolated from the seeds of Macadamia integrifolia, was constitutively expressed in transgenic tobacco and canola plants to test its effect on disease resistance. Analysis of plants transformed with 35S-MiAMP1 construct by northern and western blot analyses demonstrated the presence of MiAMP1 mRNA and the mature peptide in the transgenic plants. The MiAMP1 purified from the leaves of transgenic plants was biologically active with the same in vitro antifungal activity as native MiAMP1 purified from the seeds of macadamia. The effect of MiAMP1 expression on the economically important canola pathogen Leptosphaeria maculans (causal agent of blackleg disease) was evaluated in comparison with an untransformed control line and an azygous segregant derived from one of the transgenic lines. Lesion development on the cotyledons of the inoculated canola seedlings was significantly reduced in the T-2 progeny of seven independently transformed transgenic lines. These results suggested that, transgenic canola expressing MiAMP1 may be useful for the management of blackleg disease.
Resumo:
The presence of the antimicrobial peptide (AMP) biosynthetic genes srfAA (surfactin), bacA (bacylisin), fenD (fengycin), bmyB (bacyllomicin), spaS (subtilin), and ituC (iturin) was examined in 184 isolates of Bacillus spp. obtained from plant environments (aerial, rhizosphere, soil) in the Mediterranean land area of Spain. Most strains had between two and four AMP genes whereas strains with five genes were seldom detected and none of the strains had six genes. The most frequent AMP gene markers were srfAA, bacA, bmyB, and fenD, and the most frequent genotypes srfAA-bacA-bmyB and srfAAbacA-bmyB-fenD. The dominance of these particular genes in Bacillus strains associated with plants reinforces the competitive role of surfactin, bacyllomicin, fengycin, and bacilysin in the fitness of strains in natural environments. The use of these AMP gene markers may assist in the selection of putative biological control agents of plant pathogens
Resumo:
Psoriasis is a common T-cell-mediated skin disease with 2-3% prevalence worldwide. Psoriasis is considered to be an autoimmune disease, but the precise nature of the autoantigens triggering T-cell activation remains poorly understood. Here we find that two-thirds of patients with moderate-to-severe plaque psoriasis harbour CD4(+) and/or CD8(+) T cells specific for LL37, an antimicrobial peptide (AMP) overexpressed in psoriatic skin and reported to trigger activation of innate immune cells. LL37-specific T cells produce IFN-γ, and CD4(+) T cells also produce Th17 cytokines. LL37-specific T cells can infiltrate lesional skin and may be tracked in patients blood by tetramers staining. Presence of circulating LL37-specific T cells correlates significantly with disease activity, suggesting a contribution to disease pathogenesis. Thus, we uncover a role of LL37 as a T-cell autoantigen in psoriasis and provide evidence for a role of AMPs in both innate and adaptive immune cell activation.
Resumo:
The intracellular location of nucleic acid sensors prevents recognition of extracellular self-DNA released by dying cells. However, on forming a complex with the endogenous antimicrobial peptide LL37, extracellular DNA is transported into endosomal compartments of plasmacytoid dendritic cells, leading to activation of Toll-like receptor-9 and induction of type I IFNs. Whether LL37 also transports self-DNA into nonplasmacytoid dendritic cells, leading to type I IFN production via other intracellular DNA receptors is unknown. Here we found that LL37 very efficiently transports self-DNA into monocytes, leading the production of type I IFNs in a Toll-like receptor-independent manner. This type I IFN induction was mediated by double-stranded B form DNA, regardless of its sequence, CpG content, or methylation status, and required signaling through the adaptor protein STING and TBK1 kinase, indicating the involvement of cytosolic DNA sensors. Thus, our study identifies a novel link between the antimicrobial peptides and type I IFN responses involving DNA-dependent activation of cytosolic sensors in monocytes.
Resumo:
Double-stranded DNA (dsDNA) can trigger the production of type I interferon (IFN) in plasmacytoid dendritic cells (pDCs) by binding to endosomal Toll-like receptor-9 (TLR9; refs , , , , ). It is also known that the formation of DNA-antimicrobial peptide complexes can lead to autoimmune diseases via amplification of pDC activation. Here, by combining X-ray scattering, computer simulations, microscopy and measurements of pDC IFN production, we demonstrate that a broad range of antimicrobial peptides and other cationic molecules cause similar effects, and elucidate the criteria for amplification. TLR9 activation depends on both the inter-DNA spacing and the multiplicity of parallel DNA ligands in the self-assembled liquid-crystalline complex. Complexes with a grill-like arrangement of DNA at the optimum spacing can interlock with multiple TLR9 like a zipper, leading to multivalent electrostatic interactions that drastically amplify binding and thereby the immune response. Our results suggest that TLR9 activation and thus TLR9-mediated immune responses can be modulated deterministically.
Resumo:
Production of antimicrobial peptides in plants constitutes an approach for obtaining them in high amounts. However, their heterologous expression in a practical and efficient manner demands some structural requirements such as a minimum size, the incorporation of retention signals to assure their accumulation in specific tissues, and the presence of protease cleavage amino acids and of target sequences to facilitate peptide detection. Since any sequence modification may influence the biological activity, peptides that will be obtained from the expression must be screened prior to the synthesis of the genes for plant transformation. We report herein a strategy for the modification of the antimicrobial undecapeptide BP100 that allowed the identification of analogues that can be expressed in plants and exhibit optimum biological properties. We prepared 40 analogues obtained by incorporating repeated units of the antimicrobial undecapeptide, fragments of natural peptides, one or two AGPA hinges, a Gly or Ser residue at the N-terminus, and a KDEL fragment and/or the epitope tag54 at the C-terminus. Their antimicrobial, hemolytic and phytotoxic activities, and protease susceptibility were evaluated. Best sequences contained a magainin fragment linked to the antimicrobial undecapeptide through an AGPA hinge. Moreover, since the presence of a KDEL unit or of tag54 did not influence significantly the biological activity, these moieties can be introduced when designing compounds to be retained in the endoplasmic reticulum and detected using a complementary epitope. These findings may contribute to the design of peptides to be expressed in plants
Resumo:
A crustinlike antimicrobial peptide from the haemocytes of giant tiger shrimp, Penaeus monodon was partially characterized at the molecular level and phylogenetic analysis was performed. The partial coding sequence of 299 bp and 91 deduced amino acid residues possessed conserved cysteine residues characteristic of the shrimp crustins. Phylogenetic tree and sequence comparison clearly confirmed divergence of this crustinlike AMP from other shrimp crustins. The differential expression of the crustinlike AMP in P. monodon in response to the administration of various immunostimulants viz., two marine yeasts (Candida haemulonii S27 and Candida sake S165) and two bglucan isolates (extracted from C. haemulonii S27 and C. sake S165) were noted during the study. Responses to the application of two grampositive probiotic bacteria (Bacillus MCCB101 and Micrococcus MCCB104) were also observed. The immune profile was recorded preand postchallenge white spot syndrome virus (WSSV) by semiquantitative RTPCR. Expressions of seven WSSV genes were also observed for studying the intensity of viral infection in the experimental animals. The crustinlike AMP was found to be constitutively expressed in the animal and a significant downregulation could be noted postchallenge WSSV. Remarkable downregulation of the gene was observed in the immunostimulant fed animals prechallenge followed by a significant upregulation postchallenge WSSV. Tissuewise expression of crustinlike AMP on administration of C. haemulonii and Bacillus showed maximum transcripts in gill and intestine. The marine yeast, C. haemulonii and the probiotic bacteria, Bacillus were found to enhance the production of crustinlike AMP and confer significant protection to P. monodon against WSSV infection
Resumo:
Fish & Shellfish Immunology 28 (2010) 216-220