28 resultados para ANTIFERROMAGNETS
Resumo:
At zero temperature and strong applied magnetic fields the ground state of an anisotropic antiferromagnet is a saturated paramagnet with fully aligned spins. We study the quantum phase transition as the field is reduced below an upper critical H(c2) and the system enters a XY-antiferromagnetic phase. Using a bond operator representation we consider a model spin-1 Heisenberg antiferromagnetic with single-ion anisotropy in hypercubic lattices under strong magnetic fields. We show that the transition at H(c2) can be interpreted as a Bose-Einstein condensation (BEC) of magnons. The theoretical results are used to analyze our magnetization versus field data in the organic compound NiCl(2)-4SC(NH(2))(2) (DTN) at very low temperatures. This is the ideal BEC system to study this transition since H(c2) is sufficiently low to be reached with static magnetic fields (as opposed to pulsed fields). The scaling of the magnetization as a function of field and temperature close to H(c2) shows excellent agreement with the theoretical predictions. It allows us to obtain the quantum critical exponents and confirm the BEC nature of the transition at H(c2).
Resumo:
Motivated by the quasi-one-dimensional antiferromagnet CaV(2)O(4), we explore spin-orbital systems in which the spin modes are gapped but orbitals are near a macroscopically degenerate classical transition. Within a simplified model we show that gapless orbital liquid phases possessing power-law correlations may occur without the strict condition of a continuous orbital symmetry. For the model proposed for CaV(2)O(4), we find that an orbital phase with coexisting order parameters emerges from a multicritical point. The effective orbital model consists of zigzag-coupled transverse field Ising chains. The corresponding global phase diagram is constructed using field theory methods and analyzed near the multicritical point with the aid of an exact solution of a zigzag XXZ model.
Resumo:
We present the temperature dependence of the uniform susceptibility of spin-half quantum antiferromagnets on spatially anisotropic triangular lattices, using high-temperature series expansions. We consider a model with two exchange constants J1 and J2 on a lattice that interpolates between the limits of a square lattice (J1=0), a triangular lattice (J2=J1), and decoupled linear chains (J2=0). In all cases, the susceptibility, which has a Curie-Weiss behavior at high temperatures, rolls over and begins to decrease below a peak temperature Tp. Scaling the exchange constants to get the same peak temperature shows that the susceptibilities for the square lattice and linear chain limits have similar magnitudes near the peak. Maximum deviation arises near the triangular-lattice limit, where frustration leads to much smaller susceptibility and with a flatter temperature dependence. We compare our results to the inorganic materials Cs2CuCl4 and Cs2CuBr4 and to a number of organic molecular crystals. We find that the former (Cs2CuCl4 and Cs2CuBr4) are weakly frustrated and their exchange parameters determined through the temperature dependence of the susceptibility are in agreement with neutron-scattering measurements. In contrast, the organic materials considered are strongly frustrated with exchange parameters near the isotropic triangular-lattice limit.
Resumo:
En del av de intressantaste fenomenen inom dagens materialfysik uppstår ur ett intrikat samspel mellan myriader av elektroner. Högtemperatursupraledare är det mest berömda exemplet. Varken klassiska teorier eller modeller där elektronerna är oberoende av varandra kan förklara de häpnadsväckande effekterna i de starkt korrelerade elektronsystemen. I vissa kopparoxider, till exempel La2CuO4, är det känt att valenselektronerna till följd av en stark ömsesidig växelverkan lokaliseras en och en till kopparatomerna i föreningens CuO2 plan. Laddningarnas inneboende magnetiska moment—spinnet—får då en avgörande roll för materialets elektriska och magnetiska egenskaper, vilka i exemplets fall kan beskrivas med Heisenbergmodellen som är den grundläggande teoretiska modellen för mikroskopisk magnetism. Men exakt varför föreningarna kan bli supraledande då de dopas med överskottsladdningar är än så länge en obesvarad fråga. Min avhandling undersöker orenheters inverkan på Heisenbergmodellens magnetiska egenskaper—ett problem av både experimentell och teoretisk relevans. En etablerad numerisk metod har använts—en kvantmekanisk Monte Carlo teknik—för att utföra omfattande datorsimuleringar av den matematiska modellen på två dedikerade Linux datorkluster. Arbetet hör till området beräkningsfysik. De teoretiska modellerna för starkt korrelerade elektronsystem, däribland Heisenbergmodellen, är ytterst invecklade matematiskt sett och de kan inte lösas exakt. Analytiska utredningar bygger för det mesta på antaganden och förenklingar vars inverkningar på slutresultatet är ofta oklara. I det avseende kan numeriska studier vara exakta, det vill säga de kan behandla modellerna som de är. Oftast behövs bägge tillvägagångssätten. Den röda tråden i arbetet har varit att numeriskt testa vissa högaktuella analytiska förutsägelser rörande effekterna av orenheter i Heisenbergmodellen. En del av dem har vi på basen av mycket noggranna data kunnat bekräfta. Men våra resultat har också påvisat felaktigheter i de analytiska prognoserna som sedermera delvis reviderats. En del av avhandlingens numeriska upptäckter har i sin tur stimulerat till helt nya teoretiska studier.
Resumo:
In certain Mott-insulating dimerized antiferromagnets, triplet excitations of the paramagnetic phase display both three-particle and four-particle interactions. When such a magnet undergoes a quantum phase transition into a magnetically ordered state, the three-particle interaction becomes part of the critical theory provided that the lattice ordering wave vector is zero. One microscopic example is the staggered-dimer antiferromagnet on the square lattice, for which deviations from O(3) universality have been reported in numerical studies. Using both symmetry arguments and microscopic calculations, we show that a nontrivial cubic term arises in the relevant order-parameter quantum field theory, and we assess its consequences using a combination of analytical and numerical methods. We also present finite-temperature quantum Monte Carlo data for the staggered-dimer antiferromagnet which complement recently published results. The data can be consistently interpreted in terms of critical exponents identical to that of the standard O(3) universality class, but with anomalously large corrections to scaling. We argue that the cubic interaction of critical triplons, although irrelevant in two spatial dimensions, is responsible for the leading corrections to scaling due to its small scaling dimension.
Resumo:
By means of nuclear spin-lattice relaxation rate T-1(-1), we follow the spin dynamics as a function of the applied magnetic field in two gapped quasi-one-dimensional quantum antiferromagnets: the anisotropic spin-chain system NiCl2-4SC(NH2)(2) and the spin-ladder system (C5H12N)(2)CuBr4. In both systems, spin excitations are confirmed to evolve from magnons in the gapped state to spinons in the gapless Tomonaga-Luttinger-liquid state. In between, T-1(-1) exhibits a pronounced, continuous variation, which is shown to scale in accordance with quantum criticality. We extract the critical exponent for T-1(-1), compare it to the theory, and show that this behavior is identical in both studied systems, thus demonstrating the universality of quantum-critical behavior.
Resumo:
We use series expansions to study the excitation spectra of spin-1/2 antiferromagnets on anisotropic triangular lattices. For the isotropic triangular lattice model (TLM), the high-energy spectra show several anomalous features that differ strongly from linear spin-wave theory (LSWT). Even in the Neel phase, the deviations from LSWT increase sharply with frustration, leading to rotonlike minima at special wave vectors. We argue that these results can be interpreted naturally in a spinon language and provide an explanation for the previously observed anomalous finite-temperature properties of the TLM. In the coupled-chains limit, quantum renormalizations strongly enhance the one-dimensionality of the spectra, in agreement with experiments on Cs2CuCl4.