1000 resultados para ANTHRACNOSE RESISTANCE
Resumo:
Postharvest diseases remain a significant constraint to the transport, storage and marketing of mangoes. The two main ones are anthracnose and stem end rot. Anthracnose caused by Colletotrichum gloeosporioides is the more wide-spread of the two. Varieties within Mangifera indica are known to vary in their level of reactions to anthracnose; however, the best tolerance in current commercial cultivars is not sufficient to eliminate the need for pre- and postharvest fungicides treatments. A screening program was initiated in mango accessions in the Australian National Mango Genebank to look for any significant resistance to C. gloeosporioides in fruit as they ripened. Screening was conducted by rating reactions to natural infection of anthracnose and reactions to artificially inoculating fruit with virulent isolates of C. gloeosporioides. A range of reactions to the pathogen were identified, with strong resistance found in one accession of the species M. laurina. This accession was used as the pollen parent in a controlled crossing program with a M. indica hybrid from the Australian Mango Breeding Program (AMBP). Sixty successful hybrids between the species have been generated. The hybrid population will be screened for resistance to anthracnose and used for gene discovery investigations to identify markers for anthracnose resistance.
Resumo:
An improved cultivar, based on 17 genotypes of S. capitata and six of S.macrocephala, was developed at the wEmbrapa Beef Cattle Research Center, Campo Grande, Brazil. The aim was to create durable, race non-specific resistance to anthracnose controlled by polygenic factors. A mass hybridisation technique was employed to produce a high degree of genetic diversity and sizeable quantities of seed of hybrid-derived progenies of Brazilian and Venezuelan genotypes of S. capitata. Outcrossing resulted in a significant improvement in the forage production of progeny of Venezuelan accessions. The multicross was evaluated in multilocational trials, each representing a large tract of country in the Cerrados ecosystem along a north-south transect from lat.6degrees S to 20degrees S. The genetic shift that occurred in S. capitata was a key element in the formation of the new cultivar. It is a complex mixture of two species, and a recombination of much desired forage traits of Brazilian x Venezuelan genotypes, high forage and seed yields coupled with anthracnose resistance. The new cultivar with its diverse genetic make-up has a wide application in the acid-soil savannas of tropical America. It was released by Embrapa for the Cerrados in 2000.
Resumo:
Frutos do maracuja-doce de dez procedencias foram avaliados quanto a severidade da antracnose (Colletotrichum gloeosporioides Penz.) e quanto a perda de materia fresca em dois ambientes de armazenamento: camara fria ( 5 ºC e UR de 90%) e em ambiente de sala ( 23 +-1 ºC e UR de 65+- 5%). Plantas provenientes de frutos colhidos em estado nativo ou adquiridos nos mercados da Central de Abastecimento de São Paulo - CEAGESP, procedencias A, B, e C; Vicosa-MG, procedencia D; Tome-Acu-PA, procedencia E, Itacoatiara-AM, procedencia F, Ouro Preto d'Oeste-RO, procedencia G; Domingos Martins-ES, procedencia H; Pontes e Lacerda-MT, procedencia I; e Rondonopolis-MT, procedencia J foram estabelecidas no Distrito Federal. Apos as primeiras colheitas, a melhor planta de cada procedencia, selecionada pela maior taxa de vingamento, coloracao de casca, tamanho do fruto e menor espessura da casca, foi multiplicada por estaquia. Frutos de tres plantas de cada procedencia, obtidos por polinizacao natural, forma colhidos de vez e mantidos em caixas-padrao de papelao. As avalacoes forma efetuadas no dia da colheita (tempo zero), aos 3, 6, 9 e 12 dias apos, determinado-se o percentual de perda de materia fresca e a severidade da antracnose ( % da superficie do fruto ocupada por lesoes) e incidencia (% de frutos atacados) de outras doencas, aos 12 dias de armazenamento. As procedencias com menores indices de antracnose foram a I e a G, seguidas pela D e J. Os frutos armazenados em camaras fria foram menos afetados pela doenca. As procedencias G e A foram as que, ao final dos doze dias de armazenamento, perderam menos materia fresca sendo as perdas respectivamente de 16,68% e 17,86% em ambiente de sala e de 7,71% e 6,61% em camara fria. Considerando-se a media de todas as procedencias aos 12 dias de armazenamento, a menor perda de materia fresca ( 9, 78%) ocorre em camara fria, contra 22, 06% em ambiente de sala. As procedencias A, E, F, G e J perde menos materia fresca em ambiente natural que as demais.
Resumo:
Hybrid stylos (Stylosanthes guianensis var. vulgaris x var. pauciflora) with durable, quantitative resistance to anthracnose, mid-season harvest maturity date (early-July), high DM and seed yields have been selected at the Embrapa Beef Cattle Research Center, Campo Grande, Brazil. The hybrids displayed improved forage traits in Brazil, the native habitat and major center of diversity of the species and its pathogen, as well as in vastly different ecosystems. Dry forage yields and anthracnose resistance of superior selections and their composites were equal, in some instances, significantly better, than those of cv. Mineir (a) over tildeo in multilocational trials situated in the Cerrados from lat. 6degrees S to lat. 20degrees S. Selected hybrids performed well in comparison with the highly successful CIAT 184 (cv.Reyan II) on Hainan Island, China. Composites have also shown good promise in seed multiplication plots in Queensland, Australia. A positive attribute of composite hybrids is their great genetic diversity in contrast to pure-line cultivars with a relatively narrow genetic base. These truly tropical forms of stylo are best adapted to regions with >1500mm average annual rainfall.
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Background: The genus Colletotrichum is one of the most economically important plant pathogens, causing anthracnose on a wide range of crops including common beans (Phaseolus vulgaris L.). Crop yield can be dramatically decreased depending on the plant cultivar used and the environmental conditions. This study aimed to identify potential genetic components of the bean immune system to provide environmentally friendly control measures against this fungus. Methodology and Principal Findings: As the common bean is not amenable to reverse genetics to explore functionality and its genome is not fully curated, we used putative Arabidopsis orthologs of bean expressed sequence tag (EST) to perform bioinformatic analysis and experimental validation of gene expression to identify common bean genes regulated during the incompatible interaction with C. lindemuthianum. Similar to model pathosystems, Gene Ontology (GO) analysis indicated that hormone biosynthesis and signaling in common beans seem to be modulated by fungus infection. For instance, cytokinin and ethylene responses were up-regulated and jasmonic acid, gibberellin, and abscisic acid responses were down-regulated, indicating that these hormones may play a central role in this pathosystem. Importantly, we have identified putative bean gene orthologs of Arabidopsis genes involved in the plant immune system. Based on experimental validation of gene expression, we propose that hypersensitive reaction as part of effector-triggered immunity may operate, at least in part, by down-regulating genes, such as FLS2-like and MKK5-like, putative orthologs of the Arabidopsis genes involved in pathogen perception and downstream signaling. Conclusions/Significance: We have identified specific bean genes and uncovered metabolic processes and pathways that may be involved in the immune response against pathogens. Our transcriptome database is a rich resource for mining novel defense-related genes, which enabled us to develop a model of the molecular components of the bean innate immune system regulated upon pathogen attack.
Resumo:
Mature green mango fruits of commercially important varieties were screened to investigate the levels of constitutive antifungal compounds in peel and to assess anthracnose disease after inoculation with Colletotrichum gloeosporioides. High pressure liquid chromatography was used to quantify the levels of 5-n-heptadecenylresorcinol and 5-n-pentadecylresorcinol in the peel extracts. The fruit peel of the varieties ‘Kensington Pride’ and ‘Keitt’ were observed to have the highest levels of both 5-n-heptadecenylresorcinol (107.3-123.7 and 49.9-61.4 μg/g FW, respectively) and 5-n-pentadecylresorcinol (6.32-7.99 and 3.30-6.05 μg/g FW, respectively), and the fruit of the two varieties were found to have some resistance to postharvest anthracnose. The varieties ‘Kent’, ‘R2E2’, ‘Nam Doc Mai’, ‘Calypso’, and ‘Honey Gold’ contained much lower concentrations of resorcinols in their peel and three of these varieties were found to be more susceptible to anthracnose. Concentrations of 5-nheptadecenylresorcinol were significantly lower at the ‘sprung’ and ‘eating ripe’ stages of ripening compared to levels at harvest. Concentrations of 5-n-pentadecylresorcinol did not differ significantly across the three stages of ripening. The levels of these two resorcinols were found to be strongly inter-correlated (P < 0.001, r2 = 0.71), with concentrations of 5-nheptadecenylresorcinol being an average 18 times higher than those of 5-npentadecylresorcinol. At the ‘eating ripe’ stage, significant relationships were observed between the concentrations of each type of alk(en)ylresorcinol and anthracnose lesion areas following postharvest inoculation, P<0.001, r2= 0.69 for 5-n pentadecylresorcinol, and P<0.001, r2= 0.44 for 5-n-heptadecenylresorcinol.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Generation means was used to study the mode of inheritance of resistance to anthracnose stalk rot in tropical maize. Each population was comprised of six generations in two trials under a randomized block design. Inoculations were performed using a suspension of 105 conidia mL(-1) applied into the stalk. Internal lesion length was directly measured by opening the stalk thirty days after inoculation. Results indicated contrasting modes of inheritance. In one population, dominant gene effects predominated. Besides, additive x dominant and additive x additive interactions were also found. Intermediate values of heritability indicated a complex resistance inheritance probably conditioned by several genes of small effects. An additive-dominant genetic model sufficed to explain the variation in the second population, where additive gene effects predominated. Few genes of major effects control disease resistance in this cross. Heterosis widely differed between populations, which can be attributed to the genetic background of the parental resistant lines.
Canopy size and induced resistance in Stylosanthes scabra determine anthracnose severity at high CO2
Resumo:
Anthracnose, caused by Colletotrichum trifolii, is one of the most serious diseases influencing lucerne persistence and productivity in eastern Australia. The disease is largely controlled by plant resistance; however, new pathotypes of C. trifolii have developed in Australia, seriously limiting the productive life of susceptible cultivars. This paper describes an incompletely recessive and quantitatively inherited resistance to C. trifolii identified in a clone (W116) from cv. Sequel. S-1, F-1, F-2 and backcross populations of W116 and D (highly susceptible clone) were studied for their reaction to C. trifolii race 1. Resistance was found to be quantitatively inherited, and quantitative trait loci associated with resistance and susceptibility were identified in a backcross population (D x W116) x D using random amplified polymorphic DNA and amplified fragment length polymorphic markers. A multi-locus region on linkage group 4 was found to contribute significantly to the resistance phenotype. The application of DNA markers to allow exploitation of this quantitatively inherited resistance in lucerne breeding is discussed.
Resumo:
This study aimed to perform phenotypic and molecular characterization of cultivars and breeding lines of common bean for resistance to anthracnose.
Resumo:
O uso de cultivares resistentes é a principal medida para o manejo da antracnose do colmo em milho. Neste trabalho, objetivou-se identificar linhagens com níveis de resistência à antracnose do colmo, similar ao híbrido 2B710, considerado resistente. Dois experimentos foram conduzidos na Embrapa Milho e Sorgo. No primeiro experimento, foram avaliados 234 linhagens e os híbridos BRS1010 (suscetível) e 2B710 (resistente). Foi realizada inoculação artificial com um isolado de C. graminicola, na fase de pré-pendoamento e, após 30 dias, foi realizada a avaliação da severidade da antracnose no colmo. O segundo experimento foi conduzido com 48 linhagens e os híbridos inoculados com dois isolados de C. graminicola. No primeiro experimento, os genótipos formaram oito grupos com base na severidade da doença e as linhagens do último grupo foram consideradas as mais resistentes, incluindo o híbrido 2B710, em que os genótipos apresentaram valores de severidade entre 11,50 a 23%. No segundo experimento, houve interação entre os fatores linhagens e isolados e, de modo geral, as linhagens apresentaram a mesma tendência de reação obtida no primeiro experimento, no entanto, a severidade da doença foi maior para a maioria das linhagens, mesmo quando utilizado o outro isolado. Com isso, foi possível realizar a seleção de linhagens com bons níveis de resistência, as quais podem ser utilizadas em programas de melhoramento, em estudos de herança, desenvolvimento de híbridos e identificação de marcadores moleculares, associados com resistência à antracnose do colmo.
Resumo:
The fungus causing anthracnose disease in mango, Colletotrichum gloeosporioides, (C g.), infects immature fruit early in the season, then enters a long latent phase. After harvest, when fruit start to ripen, the latency breaks and the fungus ramifies through the peel and pulp tissues causing black disease lesions. The breaking of pathogen latency in ripening mango fruit has been correlated with decreasing concentrations of the endogenous antifungal resorcinol compounds (Droby et al., 1986). The level of these antifungal resorcinols vary among mango cultivars (Droby et a1 , 1986). Controlling diseases by managing natural resistance of fruit to fungal attack could minimize the use of pesticides, which have become of major public concern on health and environmental grounds. The plant resistance activator benzo(l,2,3)thiadiazole-7-carbothioic acid S-methyl ester (trade name Bion®) has been widely reported as an effective inducer of systemic resistance. For example, Bion® was reported to induce pathogenesis-related proteins (PR proteins) and stimulate plant defence in peas (Dann and Deverall, 2000) and roses (Suo and Leung, 2001). However, until now, there is no information about the role of Bion® in activation of mango (cv. Kensington Pride) fruit resistance to anthracnose disease. The aim of this research is to determine the effect of resistance activators on defence responses of mango fruit to anthracnose disease.
Resumo:
Common bean, one of the most important legumes for human consumption, may have drastic reduction in yield due to anthracnose, a disease caused by the fungus Colletotrichum lindemuthianum. Rapid induction of the plant defense mechanisms is essential to establish an incompatible interaction with this pathogenic fungus. In this study, we evaluated spatial (leaves, epicotyls and hypocotyls) and temporal (24, 48, 72 and 96 hours after inoculation [HAI]) relative expression (RE) of 12 defense-related transcripts selected from previously developed ESTs libraries, during incompatible interaction between the resistant common bean genotype SEL 1308 and the avirulent anthracnose pathogen race 73, using real time quantitative RT-PCR (RT-qPCR) analysis. All selected transcripts, including the ones coding for pathogenesis-related (PR) proteins (PR1a, PR1b, PR2, and PR16a and PR16b) were differentially regulated upon pathogen inoculation. The expression levels of these transcripts were dependent on the tissue and time post inoculation. This study contributes to a better understanding of the kinetics of induced defenses against a fungal pathogen of common bean and may be used as a base line to study defenses against a broad range of pathogens including bacteria as well as non-host resistance. (C) 2012 Elsevier GmbH. All rights reserved.