999 resultados para ANOXIC SEDIMENTS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel diffusive gradients in thin film probe developed comprises diffusive gel layer of silver iodide (AgI) and a back-up Microchelex resin gel layer. 2D high-resolution images of sulfide and trace metals were determined respectively on the AgI gel by densitometric analysis and on the Microchelex resin layer with laser-ablation-inductively-coupled plasma mass spectrometry (LA-ICP-MS).We investigated the validity of the analytical procedures used for the determination of sulfide and trace metals. We found low relative standard deviations on replicate measurements, linear trace-metal calibration curves between the LA-ICP-MS signal and the true trace-metal concentration in the resin gel, and a good agreement of the sulfide results obtained with the AgI resin gel and with other analytical methods. The method was applied on anoxic sediment pore waters in an estuarine and marine system. Simultaneous remobilization of sulfide and trace metals was observed in the marine sediment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the phosphorus (P) and iron (Fe) fractionation in four cores with anoxic sediments, deposited during the mid-Cretaceous oceanic anoxic event 2 (~94 Ma) and the Paleocene-Eocene thermal maximum (?55 Ma), that were exposed to oxygen after core recovery. Surprisingly, P associated with iron oxyhydroxides (Fe-bound P) was a major P phase in these laminated sediments deposited under euxinic conditions. A significant fraction of total Fe was present as (poorly) crystalline ferric Fe. This fraction increased with increasing storage time of the investigated cores. In carbonate-poor samples, Fe-bound P accounted for up to 99% of total P and its abundance correlated with pyrite contents. In samples with higher CaCO3 contents (>5 wt% in the investigated samples), P was mostly present in authigenic Ca-P minerals, irrespective of pyrite contents. We conclude that the P fractionation in anoxic, carbonate-poor, sediments is strongly affected by pyrite oxidation that occurs when these sediments are exposed to oxygen. Pyrite oxidation produces sulfuric acid and iron oxyhydroxides. The abundance of poorly crystalline Fe oxyhydroxides provides further evidence that these were indeed formed through recent (post-recovery) oxidation rather than in situ tens of millions of years ago. The acid dissolves apatite and the released phosphate is subsequently bound in the freshly formed iron oxyhydroxides. Pyrite oxidation thus leads to a conversion of authigenic Ca-P to Fe-bound P. In more calcareous samples, CaCO3 can act as an effective buffer against acidic dissolution of Ca-P minerals. The results indicate that shielding of sediments from atmospheric oxygen is vital to preserve the in situ P fractionation and to enable a valid reconstruction of marine phosphorus cycling based on sediment records.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Five zones along a transect of 180 m were selected for study on the Island of Pai Matos (Sao Paulo, Brazil). Four of the zones are colonised by vascular plants (Spartina SP, Laguncularia LG, Avicennia AV and Rhizophora RH) and were denominated soils, and the other zone, which lacks vegetation, was denominated sediment (SD). The geochemical conditions differed significantly in soils and sediment and also at different depths. The soils were oxic (Eh > 350 mV) or suboxic (Eh: 350-100 mV) at the surface and anoxic (Eh < 100 mV) at depth, whereas in the sediment anoxic conditions prevailed at all depths, but with a lower concentration of sulphides in the pore water and pyrite in the solid fraction. Under these geochemical conditions Fe is retained in the soils, while the Mn tends to be mobilized and lost. The most abundant form of iron oxyhydroxide was lepidocrocite (mean concentration for all sites and depths, 45 +/- 19 mu mol g(-1)), followed by goethite (30 19 mu mol g(-1))and ferrihydrite (19 +/- 11 mu mol g(-1)),with significant differences among the mean concentrations. There was a significant decrease with depth in all the types of Fe oxyhydroxides measured, particularly the poorly crystalline forms. The pyrite fraction was an important component of the free Fe pool (non-silicate Fe) in all soils as well as in the sediment, especially below 20 cm depth (mean concentration for all sites and depths, 60 +/- 54 mu mol CI). Furthermore, the mean concentration of Fe-pyrite for all sites and depths was higher than that obtained for any of the three Fe oxyhydroxides measured. The Fe-AVS was a minor fraction, indicating that the high concentrations of dissolved Fe in the soils in the upper area of the transect result from the oxidation of Fe sulphides during low tide. Mossbauer spectroscopy also revealed that most of the Fe (III) was associated with silicates, in this case nontronite. The presence of crystals of pyrite associated with phyllosilicates in samples from the upper layer of the soils may indicate that pyritization of this form of Fe(III) is more rapid than usually reported for ocean bed sediments. The sequential extraction of Mn did not reveal any clearly dominant fraction, with the Mn-carbonate fraction being the most prevalent, followed by exchangeable Mn and oxides of Mn, whereas pyrite-Mn and Mn associated with crystalline Fe-oxides were present at significantly lower concentrations. The high concentration of dissolved Mn found in the soils in the lower part of the transect is consistent with the fact that the solubility is determined by the carbonate fraction. Unlike for Fe, in the soils in the higher zone, which are subject to intense drainage during low tide, there was loss of Mn, as reflected by the concentration of total Mn. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Re-Os and Pb-Pb isotopic analysis of reduced varved sediments cored in the deeper basin of Saanich Inlet (B.C.) are presented. From core top to 61 cm down-core, spanning approximately the last 100 yrs of sedimentation, 187Os/188Os ratio and Os concentration respectively increase from ~0.8 to ~0.9 and from 55 to 60 ppt, whereas Re concentration decreases from 3600 to 2600 ppt. Re correlates with Corg (R2=0.6) throughout the entire section, whereas Os follows Re and Corg trends deeper down-core, suggesting a decoupling of a Re- and Os-geochemistry during burial and/or very early diagenesis. No systematic compositional differences are observed between seasonal laminae. 204Pb-normalized lead isotope ratios increase from sediment surface down to 7 cm down-core, then decrease steadily to pre-industrial levels at ~50 cm down-core. This pattern illustrates the contamination from leaded gasoline until the recent past. The measured Pb isotopic ratios point primarily toward gasoline related atmospheric lead from the USA. The osmium isotopic values measured are significantly lower than those of modern seawater-Os. In comparison with other anoxic environments, the osmium content of Saanich Inlet sediments is low, and its Os isotopic composition suggests significant inputs from unradiogenic sources (detrital and/or dissolved). Ultramafic lithologies in the watershed of the Fraser River are suspected to contribute to sedimentary inputs as well as to the input of dissolved unradiogenic osmium in the water of Saanich Inlet. The presence of some unradiogenic Os from anthropogenic contamination cannot be discounted near the core top, but since deeper, pre-anthropogenic levels also yielded unradiogenic Os results, one is led to conclude that the overall low 187Os/188Os ratios result from natural geochemical processes. Thus, the bulk sediment of Saanich Inlet does not appear to record 187Os/188Os composition of the marine end-member of the only slightly below normal salinity, fjord water. The low seawater-derived Os content of the sediment, coupled with unradiogenic Os inputs from local sources, explains the overall low isotopic values observed. As a consequence, such near-shore anoxic sediments are unlikely to record changes in the past ocean Os isotopic composition.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A. Continental slope sediments off Spanish-Sahara and Senegal contain up to 4% organic carbon and up to 0.4% total nitrogen. The highest concentrations were found in sediments from water depths between 1000 and 2000 m. The regional and vertical distribution of organic matter differs significantly. Off Spanish-Sahara the organic matter content of sediment deposited during glacial times (Wuerm, Late Riss) is high whereas sediments deposited during interglacial times (Recent, Eem) are low in organic matter. Opposite distribution was found in sediments off Senegal. The sediments contain 30 to 130 ppm of fixed nitrogen. In most sediments this corresponds to 2-8 % of the total nitrogen. Only in sediments deposited during interglacial times off Spanish-Sahara up to 20 % of the total nitrogen is contained as inorganically bound nitrogen. Positive correlations of the fixed nitrogen concentrations to the amounts of clay, alumina, and potassium suggest that it is primarily fixed to illites. The amino acid nitrogen and hexosamine nitrogen account for 17 to 26 % and 1.3 to 2.4 %, respectively of the total nitrogen content of the sediments. The concentrations vary between 200 and 850 ppm amino acid nitrogen and 20 to 70 ppm hexosamine nitrogen, both parallel the fluctiations of organic matter in the sediment. Fulvic acids, humic acids, and the total organic matter of the sediments may be clearly differentiated from one another and their amino acid and hexosamine contents and their amino acid composition: a) Fulvic acids contain only half as much amino acids as humic acids b) The molar amino acid/hexosamine ratios of the fulvic acids are half those of the humic acids and the total organic matter of the sediment c) The amino acid spectra of fulvic acids are characterized by an enrichment of aspartic acid, alanine, and methionine sulfoxide and a depletion of glycine, valine, isoleucine, leucine, tyrosine, phenylalanine, lysine, and arginine compared to the spectra of the humic acids and those of the total organic matter fraction of the sediment. d) The amino acid spectra of the humic acids and those of the total organic matter fraction of the sediments are about the same with the exception that arginine is clearly enriched in the total organic matter. In general, as indicated by the amino compounds humic acids resemble closer the total organic matter composition than the low molecular fulvic acids do. This supports the general idea that during the course of diagenesis in reducing sediments organic matter stabilizes from a fulvic-like structure to humic-like structure and finally to kerogen. The decomposition rates of single aminio acids differ significantly from one another. Generally amino acids which are preferentially contained in humic acids and the total organic matter fraction show a smaller loss with time than those preferably well documented in case of the basic amino acids lysine and arginine which- although thermally unstable- are the most stable amino acids in the sediments. A favoured incorporation of these compounds into high molecular substances as well as into clay minerals may explain their relatively high "stability" in the sediment. The nitrogen loss from the sediments due to the activity of sulphate-reducing bacteria amounts to 20-40 % of the total organic nitrogen now present. At least 40 % of the organic nitrogen which is liberated by sulphate-reducing bacteria can be explained ny decomposition of amino acids alone. B. Deep-sea sediments from the Central Pacific The deep-seas sediments contain 1 to 2 orders of magnitude less organic matter than the continental slope sediments off NW Africa, i.e. 0.04 to 0.3 % organic carbon. The fixed nitrogen content of the deep-sea sediments ranges from 60 to 270 ppm or from 20 to 45 % of the total nitrogen content. While ammonia is the prevailing inorganic nitrogen compound in anoxic pore waters, nitrate predominates in the oxic environment of the deep-sea sediments. Near the sediment/water interface interstital nitrate concentrations of around 30 µg-at. N/l were recorded. These generally increase with sediment depth by 10 to 15 µg-at. NO3- N/l. This suggests the presence of free oxygen and the activity of nitrifying bacteria in the interstitial waters. The ammonia content of the interstitial water of the oxic deep-sea sediments ranges from 2 to 60 µg-at. N/l and thus is several orders of magnitude less than in anoxic sediments. In contrast to recorded nitrate gradients towards the sediments/water interface, there are no ammonia concentration gradients. However, ammonia concentrations appear to be characteristic for certain regional areas. It is suggested that this regional differentiation is caused by ion exchange reactions involving potassium and ammonium ions rather than by different decomposition rates of organic matter. C. C/N ratios All estimated C/N ratios of surface sediments vary between 3 and 9 in the deep-sea and the continental margin, respectively. Whereas the C/N ratios generally increase with depth in the sediment cores off NW Africa they decrease in the deep-sea cores. The lowest values of around 1.3 were found in the deeper sections of the deep-sea cores, the highest of around 10 in the sediments off NW Africa. The wide range of the C/N ratios as well as their opposite behaviour with increasing sediment depth in both the deep-sea and continental margin sediment cores, can be attributed mainly to the combination of the following three factors: 1. Inorganic and organic substances bound within the latticed of clay minerals tend to decrease the C/N ratios. 2. Organic matter not protected by absorption on the clay minerals tends to increase C/N ratios 3. Diagenetic alteration of organic matter by micro-organisms tends to increase C/N ratios through preferential loss of nitrogen The diagenetic changes of the microbially decomposable organic matter results in both oxic and anoxic environments in a preferential loss of nitrogen and hence in higher C/N ratios of the organic fraction. This holds true for most of the continental margin sediments off NW Africa which contain relatively high amounts of organic matter so that factors 2 and 3 predominate there. The relative low C/N ratios of the sediments deposited during interglacial times off Spanish-Sahara, which are low in organic carbon, show the increasing influence of factor 1 - the nitrogen-rich organic substances bound to clay minerals. In the deep-sea sediments from the Central Pacific this factor completely predominates so that the C/N rations of the sediments approach that of the substance absorbed to clay minerals with decreasing organic matter content. In the deeper core sections the unprotected organic matter has been completely destroyed so that the C/N ratios of the total sediments eventually fall into the same range as those of the pure clay mineral fraction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Organic-carbon-rich anoxic sediments from the continental shelf (Site 680) and the lower continental slope (Site 688) off Peru were studied to determine factors controlling the accumulation of reduced sulfur. High concentrations of organic matter in diatomaceous muds, its thermal immaturity, and the presence of abundant hydrogen-containing organic compounds lead to the conclusion that organic matter is not limiting for reduced sulfur formation. Rather, high degrees of iron pyritization at Site 680 limit pyrite accumulation in sediments from this shelf site. The low degree of iron pyritization and nearly complete reduction of dissolved sulfate at Site 688 suggest that a lack of interstitial sulfate is limiting pyrite formation there. Although factors that limit the formation of sedimentary iron sulfide are different at each site, the resulting average reduced-sulfur concentrations are remarkably similar (0.85 wt.% at Site 680 and 0.86 wt.% at Site 688). Carbon to sulfur (C/S) ratios are higher in samples containing in excess of 3 wt.% organic carbon than the average of 2.8 in normal marine sediments and have been primarily influenced by variations in organic matter concentrations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The fluorescence of porewaters from marine sediment cores from six different areas was measured. In most cases, fluorescence was affected primarily by the diagenesis of organic carbon first through sulfate reduction and subsequently by methane generation. Typically, fluorescence, dissolved organic carbon (DOC), absorbance, alkalinity, and ammonium ion concentrations correlate quite well, increasing in the upper sections of anoxic sediments and co-varying in deeper sections of these cores. The good correlation of DOC with fluorescence in the three cores in which DOC was measured indicates that fluorescence can be used to make a first order estimate of DOC concentration in anoxic porewaters. Data are consistent with a model in which labile organic matter in the sediments is broken down by sulfur reducing bacteria to low molecular weight monomers. These monomers are either remineralized to CO2 or polymerize to form dissolved, fluorescent, high molecular weight molecules. The few exceptions to this model involve hydrothermally generated hydrocarbons that are formed in situ in the Guaymas Basin or are horizontally advected along the decollement in the Nankai Trench.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The nature of Re-platinum-group element (PGE; Pt, Pd, Ir, Os, Ru) transport in the marine environment was investigated by means of marine sediments at and across the Cretaceous-Tertiary boundary (KTB) at two hemipelagic sites in Europe and two pelagic sites in the North and South Pacific. A traverse across the KTB in the South Pacific pelagic clay core found elevated levels of Re, Pt, Ir, Os, and Ru, each of which is approximately symmetrically distributed over a distance of ~1.8 m across the KTB. The Re-PGE abundance patterns are fractionated from chondritic relative abundances: Ru, Pt, Pd, and Re contents are slightly subchondritic relative to Ir, and Os is depleted by ~95% relative to chondritic Ir proportions. A similar depletion in Os (~90%) was found in a sample of the pelagic KTB in the North Pacific, but it is enriched in Ru, Pt, Pd, and Re relative to Ir. The two hemipelagic KTB clays have near-chondritic abundance patterns. The ~1.8-m-wide Re-PGE peak in the pelagic South Pacific section cannot be reconciled with the fallout of a single impactor, indicating that postdepositional redistribution has occurred. The elemental profiles appear to fit diffusion profiles, although bioturbation could have also played a role. If diffusion had occurred over ~65 Ma, the effective diffusivities are ~10**?13 cm**2/s, much smaller than that of soluble cations in pore waters (~10**?6 cm**2/s). The coupling of Re and the PGEs during redistribution indicates that postdepositional processes did not significantly fractionate their relative abundances. If redistribution was caused by diffusion, then the effective diffusivities are the same. Fractionation of Os from Ir during the KTB interval must therefore have occurred during aqueous transport in the marine environment. Distinctly subchondritic Os/Ir ratios throughout the Cenozoic in the South Pacific core further suggest that fractionation of Os from Ir in the marine environment is a general process throughout geologic time because most of the inputs of Os and Ir into the ocean have Os/Ir ratios >/=1. Mass balance calculations show that Os and Re burial fluxes in pelagic sediments account for only a small fraction of the riverine Os (<10%) and Re (<0.1%) inputs into the oceans. In contrast, burial of Ir in pelagic sediments is similar to the riverine Ir input, indicating that pelagic sediments are a much larger repository for Ir than for Os and Re. If all of the missing Os and Re is assumed to reside in anoxic sediments in oceanic margins, the calculated burial fluxes in anoxic sediments are similar to observed burial fluxes. However, putting all of the missing Os and Re into estuarine sediments would require high concentrations to balance the riverine input and would also fail to explain the depletion of Os at pelagic KTB sites, where at most ~25% of the K-T impactor's Os could have passed through estuaries. If Os is preferentially sequestered in anoxic marine environments, it follows that the Os/Ir ratio of pelagic sediments should be sensitive to changes in the rates of anoxic sediment deposition. There is thus a clear fractionation of Os and Re from Ir in precipitation out of sea water in pelagic sections. Accordingly, it is inferred here that Re and Os are removed from sea water in anoxic marine depositional regimes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Maerl is a general term used for loose-lying subtidal beds of nodular coralline red algae. Maerl beds support high associated invertebrate and algal biodiversity, and are subject to European and UK conservation legislation. Previous investigations have shown European maerl to be ecologically fragile due to growth rates of approximately I mm per year. However, these very slow growth rates have hampered attempts to determine the key ecological requirements and sensitivity characteristics of living maerl. In this study, photosynthetic capacity determined by pulse amplitude modulated (PAM) fluorometry was used as a diagnostic of stress caused by various environmental conditions. Maerl species were exposed to a range of temperatures, salinities and light levels and to burial, fragmentation, desiccation and heavy metal treatment. Maerl was not as susceptible as previously assumed to extremes of salinity, temperature and heavy metal pollution, but burial, especially in fine or anoxic sediments, was lethal or caused significant stress. These data indicate that the main anthropogenic hazard for live maerl and the rich communities that depend on them is smothering by fine sediment, such as that produced by trawling or maerl extraction, from sewage discharges or shellfish and fish farm waste, and sedimentation resulting from disruption to tidal flow. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O tributilestanho (TBT) é considerado um dos xenobióticos mais tóxicos, produzidos e deliberadamente introduzidos no meio ambiente pelo Homem. Tem sido usado numa variedade de processos industriais e subsequentemente descarregado no meio ambiente. O tempo de meia-vida do TBT em águas marinhas é de várias semanas, mas em condições de anóxia nos sedimentos, pode ser de vários anos, devido à sua degradação mais lenta. Embora o TBT tenha sido descrito como sendo tóxico para eucariotas e procariotas, muitas bactérias podem ser resistentes a este composto. O presente trabalho teve como objetivo principal elucidar o mecanismo de resistência ao TBT em bactérias. Para além disso, pretendeu-se desenvolver um biorepórter para detectar TBT no ambiente. Para atingir estes objetivos foram delineadas várias tarefas cujos principais resultados obtidos se apresentam a seguir. Várias bactérias resistentes ao TBT foram isoladas de sedimento e água do Porto de Pesca Longínqua (PPL) na Ria de Aveiro, Portugal. Entre estas, Aeromonas molluscorum Av27 foi selecionada devido à sua elevada resistência a este composto (concentrações até 3 mM), à sua capacidade de degradar o TBT em compostos menos tóxicos (dibutilestanho, DBT e monobutilestanho, MBT) e também por usar o TBT como fonte de carbono. A. molluscorum Av27 foi caracterizada genotipica e fenotipicamente. Os fatores de virulência estudados mostraram que esta estirpe i) possui atividade lipolítica; ii) não é citotóxica para células de mamíferos, nomeadamente para células Vero; iii) não possui integrões de classe I e II e iv) possui cinco plasmídeos com aproximadamente 4 kb, 7 kb, 10 kb, 100 kb e mais de 100 kb. Estes resultados mostraram que a estirpe Av27 não é tóxica, aumentando assim o interesse nesta bactéria para futuras aplicações, nomeadamente na bioremediação. Os testes de toxicidade ao TBT mostraram que este composto tem um impacto negativo no crescimento desta estirpe, bem como, na densidade, no tamanho e na atividade metabólica das células e é responsável pela formação de agregados celulares. Assim, o TBT mostrou ser bastante tóxico para as bactérias interferindo com a atividade celular geral. O gene Av27-sugE, que codifica a proteína SugE pertencente à família das “small multidrug resistance proteins” (SMR), foi identificado como estando envolvido na resistência ao TBT nesta estirpe. Este gene mostrou ser sobreexpresso quando as células crescem na presença de TBT. O promotor do gene Av27-sugE foi utilizado para construir um bioreporter para detetar TBT, contendo o gene da luciferase do pirilampo como gene repórter. O biorepórter obtido reúne as características mais importantes de um bom biorepórter: sensibilidade (intervalo de limite de detecção de 1-1000 nM), rapidez (3 h são suficientes para a deteção de sinal) e, possivelmente, não é invasivo (pois foi construído numa bactéria ambiental). Usando sedimento recolhido no Porto de Pesca Longínqua da Ria de Aveiro, foi preparada uma experiência de microcosmos com o intuito de avaliar a capacidade de Av27 para bioremediar o TBT, isoladamente ou em associação com a comunidade bacteriana indígena. A análise das amostras de microcosmos por PCR-DGGE e de bibliotecas de 16S rDNA revelaram que a comunidade bacteriana é relativamente estável ao longo do tempo, mesmo quando Av27 é inoculada no sedimento. Para além disso, o sedimento estuarino demonstrou ser dominado por bactérias pertencentes ao filo Proteobacteria (sendo mais abundante as Delta e Gammaproteobacteria) e Bacteroidetes. Ainda, cerca de 13% dos clones bacterianos não revelaram nenhuma semelhança com qualquer dos filos já definidos e quase 100% afiliou com bactérias não cultiváveis do sedimento. No momento da conclusão desta tese, os resultados da análise química de compostos organoestânicos não estavam disponíveis, e por essa razão não foi possível tirar quaisquer conclusões sobre a capacidade desta bactéria remediar o TBT em sedimentos. Esses resultados irão ajudar a esclarecer o papel de A. molluscorum Av27 na remediação de TBT. Recentemente, a capacidade da estirpe Av27 remediar solo contaminado com TBT foi confirmada em bioensaios realizados com plantas, Brassica rapa e Triticum aestivum (Silva 2011a), e também com invertebrados Porcellionides pruinosus (Silva 2011B). Assim, poder-se-á esperar que a bioremediação do sedimento na experiência de microcosmos também tenha ocorrido. No entanto, só a análise química dos compostos organostânicos deverá ser conclusiva. Devido à dificuldade em realizar a análise analítica de organoestânicos, um método de bioensaio fácil, rápido e barato foi adaptado para avaliar a toxicidade do TBT em laboratório, antes de se proceder à análise química das amostras. O método provou a sua utilidade, embora tenha mostrado pouca sensibilidade quando se usam concentrações de TBT baixas. Em geral, os resultados obtidos contribuíram para um melhor entendimento do mecanismo de resistência ao TBT em bactérias e mostraram o potencial biotecnológico de A. molluscorum Av27, nomeadamente, no que refere à sua possível aplicação na descontaminação de TBT no ambiente e também no desenvolvimento de biorepórteres.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La caratterizzazione di sedimenti contaminati è un problema complesso, in questo lavoro ci si è occupati di individuare una metodologia di caratterizzazione che tenesse conto sia delle caratteristiche della contaminazione, con analisi volte a determinare il contenuto totale di contaminanti, sia della mobilità degli inquinanti stessi. Una adeguata strategia di caratterizzazione può essere applicata per la valutazione di trattamenti di bonifica, a questo scopo si è valutato il trattamento di soil washing, andando ad indagare le caratteristiche dei sedimenti dragati e del materiale in uscita dal processo, sabbie e frazione fine, andando inoltre a confrontare le caratteristiche della sabbia in uscita con quelle delle sabbie comunemente usate per diverse applicazioni. Si è ritenuto necessario indagare la compatibilità dal punto di vista chimico, granulometrico e morfologico. Per indagare la mobilità si è scelto di applicare i test di cessione definiti sia a livello internazionale che italiano (UNI) e quindi si sono sviluppate le tecnologie necessarie alla effettuazione di test di cessione in modo efficace, automatizzando la gestione del test a pHstat UNI CEN 14997. Questo si è reso necessario a causa della difficoltà di gestire il test manualmente, per via delle tempistiche difficilmente attuabili da parte di un operatore. Le condizioni redox influenzano la mobilità degli inquinanti, in particolare l’invecchiamento all’aria di sedimenti anossici provoca variazioni sensibili nello stato d’ossidazione di alcune componenti, incrementandone la mobilità, si tratta quindi di un aspetto da considerare quando si individuano le adeguate condizioni di stoccaggio-smaltimento, si è eseguita a questo scopo una campagna sperimentale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The seasonal dynamics of molybdenum (Mo) were studied in the water column of two tidal basins of the German Wadden Sea (Sylt-Rømø and Spiekeroog) between 2007 and 2011. In contrast to its conservative behaviour in the open ocean, both, losses of more than 50% of the usual concentration level of Mo in seawater and enrichments up to 20% were observed repeatedly in the water column of the study areas. During early summer, Mo removal by adsorption on algae-derived organic matter (e.g. after Phaeocystis blooms) is postulated to be a possible mechanism. Mo bound to organic aggregates is likely transferred to the surface sediment where microbial decomposition enriches Mo in the pore water. First δ98/95Mo data of the study area disclose residual Mo in the open water column being isotopically heavier than MOMo (Mean Ocean Molybdenum) during a negative Mo concentration anomaly, whereas suspended particulate matter shows distinctly lighter values. Based on field observations a Mo isotope enrichment factor of ε = −0.3‰ has been determined which was used to argue against sorption on metal oxide surfaces. It is suggested here that isotope fractionation is caused by biological activity and association to organic matter. Pelagic Mo concentration anomalies exceeding the theoretical salinity-based concentration level, on the other hand, cannot be explained by replenishment via North Sea waters alone and require a supply of excess Mo. Laboratory experiments with natural anoxic tidal flat sediments and modelled sediment displacement during storm events suggest fast and effective Mo release during the resuspension of anoxic sediments in oxic seawater as an important process for a recycling of sedimentary sulphide bound Mo into the water column.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocean drilling has revealed the existence of vast microbial populations in the deep subseafloor, but to date little is known about their metabolic activities. To better understand the biogeochemical processes in the deep biosphere, we investigate the stable carbon isotope chemistry of acetate and other carbon-bearing metabolites in sediment pore-waters. Acetate is a key metabolite in the cycling of carbon in anoxic sediments. Its stable carbon isotopic composition provides information on the metabolic processes dominating acetate turnover in situ. This study reports our findings for a methane-rich site at the northern Cascadia Margin (NE Pacific) where Expedition 311 of the Integrated Ocean Drilling Program (IODP) sampled the upper 190 m of sediment. At Site U1329, d13C values of acetate span a wide range from -46.0 per mill to -11.0 per mill vs. VPDB and change systematically with sediment depth. In contrast, d13C values of both the bulk dissolved organic carbon (DOC) (-21.6 ± 1.3 per mill vs. VPDB) and the low-molecular-weight compound lactate (-20.9 ± 1.8 per mill vs. VPDB) show little variability. These species are interpreted to represent the carbon isotopic composition of fermentation products. Relative to DOC, acetate is up to 23.1 per mill depleted and up to 9.1 per mill enriched in 13C. Broadly, 13C-depletions of acetate relative to DOC indicate flux of carbon from acetogenesis into the acetate pool while 13C-enrichments of pore-water acetate relative to DOC suggest consumption of acetate by acetoclastic methanogenesis. Isotopic relationships between acetate and lactate or DOC provide new information on the carbon flow and the presence and activity of specific functional microbial communities in distinct biogeochemical horizons of the sediment. In particular, they suggest that acetogenic CO2-reduction can coexist with methanogenic CO2-reduction, a notion contrary to the hypothesis that hydrogen levels are controlled by the thermodynamically most favorable electron-accepting process. Further, the isotopic relationship suggests a relative increase in acetate flow to acetoclastic methanogenesis with depth although its contribution to total methanogenesis is probably small. Our study demonstrates how the stable carbon isotope biogeochemistry of acetate can be used to identify pathways of microbial carbon turnover in subsurface environments. Our observations also raise new questions regarding the factors controlling acetate turnover in marine sediments.