930 resultados para ANGIOTENSIN-II ANTAGONISTS
Resumo:
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT: * Among children, medication palatability is crucial for adherence to therapeutic regimen. * Several studies have measured the palatability of antimicrobial suspensions in paediatric patients by means of a visual analogue scale palatability score. WHAT THIS STUDY ADDS: * This is the first analysis comparing the taste and smell acceptability of angiotensin II receptor blockers among paediatric patients with kidney disease. * From the perspective of the child with kidney disease, the taste of pulverized candesartan is significantly superior to that of pulverized irbesartan, losartan, telmisartan or valsartan. AIM: Angiotensin II receptor blockers are widely prescribed in kidney disease. Among children, medication palatability is crucial for adherence. METHODS: Taste and smell acceptability of five angiotensin II receptor blockers were compared among 21 nephropathic children using a visual analogue scale palatability score. RESULTS: The score assigned to pulverized tablets of candesartan cilexetil was significantly higher than that assigned to pulverized tablets of irbesartan, losartan, telmisartan and valsartan. CONCLUSIONS: From the perspective of the nephropathic child, the taste of pulverized candesartan cilexetil is superior to that of irbesartan, losartan, telmisartan or valsartan.
Resumo:
Water and 3% NaCl intake were increased by the injection of 4 ng angiotensin II (ANG II) into the anteroventral third ventricle (AV3V) region of rats. Pretreatment with two specific ANG II receptor antagonists, [octanoyl-Leu8]ANG II and [Leu8]ANG II, significantly reduced ANG II-induced water and saline intake. This inhibition lasted approximately 30 min, with partial recovery at 60 min. In rats with electrolytic lesion of the bilateral ventromedial nucleus of hypothalamus (VMH), the effect of ANG II on water intake was not different from that observed in sham rats, but saline ingestion increased. In summary, the present results show that the AV3V region is an important central structure for ANG II-induced saline ingestion. Lesion of the VMH increases the response to ANG II, showing an interaction between the AV3V region and the VMH in the regulation of salt ingestion.
Resumo:
The subfornical organ (SFO) and the lateral hypothalamus (LH) have been shown to be important for the central action of angiotensin II (ANG II) on water and salt regulation. Several anatomical findings have demonstrated neural connections between the SFO and the LH. The present experiments were conducted to investigate the role of the α-adrenergic antagonists and agonists injected into the LH on the water and salt intake elicited by injections of ANG II into the SFO. Prazosin (an α1-adrenergic antagonist) injected into the LH increased the salt ingestion, whereas yohimbine (an α2-adrenergic antagonist) and propranolol (a β-adrenergic antagonist) antagonized the salt ingestion induced by administration of ANG II into the SFO. Previous administration of clonidine (an α2-adrenergic agonist) or noradrenaline into the LH increased, whereas pretreatment with phenylephrine decreased the sodium intake induced by injection of ANG II into the SFO. Previous treatment with prazosin and propranolol reduced the water intake induced by ANG II. Phenylephrine increased the dipsogenic responses produced by ANG II, whereas previous treatment with clonidine injected into the LH reduced the water intake induced by ANG II administration into the SFO. The LH involvement with SFO on the excitatory and inhibitory mechanisms related to water and sodium intake is suggested.
Resumo:
We assessed the blockade of the renin-angiotensin system (RAS) achieved with 2 angiotensin (Ang) antagonists given either alone at different doses or with an ACE inhibitor. First, 20 normotensive subjects were randomly assigned to 100 mg OD losartan (LOS) or 80 mg OD telmisartan (TEL) for 1 week; during another week, the same doses of LOS and TEL were combined with 20 mg OD lisinopril. Then, 10 subjects were randomly assigned to 200 mg OD LOS and 160 mg OD TEL for 1 week and 100 mg BID LOS and 80 mg BID TEL during the second week. Blockade of the RAS was evaluated with the inhibition of the pressor effect of exogenous Ang I, an ex vivo receptor assay, and the changes in plasma Ang II. Trough blood pressure response to Ang I was blocked by 35+/-16% (mean+/-SD) with 100 mg OD LOS and by 36+/-13% with 80 mg OD TEL. When combined with lisinopril, blockade was 76+/-7% with LOS and 79+/-9% with TEL. With 200 mg OD LOS, trough blockade was 54+/-14%, but with 100 mg BID it increased to 77+/-8% (P<0.01). Telmisartan (160 mg OD and 80 mg BID) produced a comparable effect. Thus, at their maximal recommended doses, neither LOS nor TEL blocks the RAS for 24 hours; hence, the addition of an ACE inhibitor provides an additional blockade. A 24-hour blockade can be achieved with an angiotensin antagonist alone, provided higher doses or a BID regimen is used.
Resumo:
Dopamine (DA) is known as a primary regulator of prolactin secretion (PRL) and angiotensin II (Ang II) has been recognized as one brain inhibitory factor of this secretion. In this work, estrogen-primed or unprimed ovariectornized rats were submitted to the microinjection of saline or Ang II after previous microinjection of saline or of da antagonist (haloperidol, sulpiride or SCH) both in the medial preoptic area (MPOA). Our study of these interactions has shown that 1) estrogen-induced PRL secretion is mediated by Ang II and da actions in the MPOA, i.e. very high plasma PRL would be prevented by inhibitory action of Ang II, while very low levels would be prevented in part by stimulatory action of da through D-2 receptors, 2) the inhibitory action of Ang II depends on estrogen and is mediated in part by inhibitory action of da through D, receptors and in other part by inhibition of stimulatory action of da through D2 receptors.
Resumo:
We investigated the effects of injection into the supraoptic nucleus (SON) of losartanand PD 123319 (nonpeptide AT(1) and AT(2)- angiotensin II [ANG II] receptor antagonists, respectively); d(CH2)(5)-Tyr(Me)-AVP (AVPA; an arginine-vasopressin [AVP] V-1 receptor antagonist), FK 409 (a nitric oxide [NO] donor), and N-W-mtro-(L)-arginine methyl ester ((L)-NAME; an NO synthase inhibitor) oil water intake, sodium chloride 3% (NaCl) intake and arterial blood pressure induced by injection of ANG 11 into the lateral septal area (LSA). Mate Holtzman rats (250-300 g) were implanted with cannulae into SON and LSA unilaterally. The drugs were injected in 0.5 mul over 30-60 s. Controls were injected with a similar volume of 0.15 M NaCl. ANG II was injected at a dose of 10 pmol. ANG II antagonists and AVPA were injected at doses of 80 nmol. FK 409 and (L)-NAME were injected at doses of 20 and 40 mug, respectively. Water and NaCl intake was measured over a 2-h period. Prior administration of losartan into the SON decreased water and NaCl intake induced by injection of ANG II. While there was a decrease in water intake, ANG II-induced NaCl intake was significantly increased following injection of AVPA. FK 409 injection decreased water intake and sodium intake induced by ANG II. L-NAME alone increased water and sodium intake and induced a pressor effect. (L)-NAME-potentiated water and sodium intake induced by ANG II. PD 123319 produced no changes in water or sodium intake induced by ANG II. The prior administration of losartan or AVPA decreased mean arterial pressure (MAP) induced by ANG II. PD 123319 decreased the pressor effect of ANG II to a lesser degree than losartan. FK 409 decreased the pressor effect of ANG II while (L)-NAME potentiated it. These results suggest that both ANG II AT, and AVP V, receptors and NO within the SON may be involved in water intake, NaCl intake and the pressor response were induced by activation of ANG II receptors within the LSA. These results do not support the involvement of LSA AT(2) receptors in the mediation of water and NaCl intake responses induced by ANG II, but influence the pressor response. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We speculated that the influence of lateral preoptic area (LPO) in sodium balance, involves arginine(8)-vasopressin (AVP) and angiotensin (ANG II) on Na+ uptake in LPO. Therefore, the present study investigated the effects of central administration of specific AVP and ANG 11 antagonists (d(CH2)(5)-Tyr (Me)-AVP (AAVP) and [Adamanteanacetyl(1), 0-ET-D-Tyr(2), Val(4), Aminobutyryl(6), Arg(8.9)]-AVP (ATAVP) antagonists of V-1 and V-2 receptors of AVP. Also the effects of losartan and CGP42112A (selective ligands of the AT(1) and AT(2) angiotensin receptors, respectively), was investigated on Na+ uptake and renal fluid and electrolyte excretion. After an acclimatization period of 7 days, the animals were maintained under tribromoethanol (200 mg/kg body weight, intraperitonial) anesthesia and placed in a Kopf stereotaxic instrument. Stainless guide cannula was implanted into the LPO. AAVP and ATAVP injected into the LPO prior to AVP produced a reduction in the NaCl intake. Both the AT(1) and AT(2) ligands administered into the LPO elicited a decrease in the NaCl intake induced by AVP injected into the LPO. AVP injection into the LPO increased sodium renal excretion, but this was reduced by prior AAVP administration. The ATAVP produced a decreased in the natriuretic effect of AVP. The losartan injected into LPO previous to AVP decreased the sodium excretion and the CGP 421122A also decreased the natriuretic effect of AVP. The AVP produced an antidiuresis effect that was inhibited by prior administration into LPO of the ATAVP. The AAVP produced no change in the antidiuretic effect of AVP. These results suggest that LPO are implicated in sodium balance that is mediated by V-1, V-2, AT(2) and AT(2) receptors. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
The circumventricular structures and the lateral hypothalamus (LH) have been shown to be important for the central action of angiotensin II (ANGII) on water and electrolyte regulation. Several anatomical findings have demonstrated neural connection between circumventricular structures and the LH, the present experiments were conducted to investigate the role of the alpha-adrenergic antagonists and agonistic injected into the LH on the water intake, sodium and potassium excretion elicited by injections of ANGII into the lateral ventricle (LV), the water intake was measured every 30 min over a period of 120 min. The sodium, potassium and urinary volume were measured over a period of 120 min in water-loaded rats. The injection of ANGII into the LV increased the water intake, which was reduced by previous injection of clonidine (an alpha-2-adrenergic agonist) into the LH. The injection of yohimbine (an alpha-2-adrenergic antagonist) and prazosin (an alpha-l-adrenergic antagonist) into the LH, which was done before injecting ANGII into the LV, also reduced the water intake induced by ANGII. The injection of ANGII into the LV reduced the sodium, potassium and urinary volume. Previous treatment with clonidine attenuated the action of ANGII in reducing the sodium, potassium and urinary volume, whereas previous treatment with yohimbine attenuated the effects of ANGII but with less intensity than that caused by clonidine. Previous treatment with prazosin increased the inhibitory effects of ANGII in those parameters. The injection of yohimbine and prazosin, which was done before the injection of clonidine, attenuated the effect of clonidine on the ANGII mechanism. The results of this study led us to postulate that when alpha-2-adrenergic receptors are blocked, the clonidine may act on the imidazoline receptors to produce its effects on the ANGII mechanism. We may also conclude that the LH is involved with circumventricular structures, which present excitatory and inhibitory mechanisms. Such mechanisms are responsible for regulating the renal excretion of sodium, potassium and water, (C) 2000 Elsevier B.V.
Resumo:
In this study we investigated the influence of cu-adrenergic antagonists injections into the paraventricular nucleus (PVN) of the hypothalamus on the thirst and salt appetite, diuresis, natriuresis, and presser effects of angiotensin II (ANG II) stimulation of medial septal area (MSA). ANG II injection into the MSA induced water and sodium intake, diuresis, natriuresis, and presser responses. The previous injection of prazosin (an alpha (1)-adrenergic antagonist) into the PVN abolished, whereas previous administration of yohimbine (an alpha (2)-adrenergic antagonist) into the PVN increased the water and sodium intake, urinary, natriuretic, and presser responses induced by ANG ii injected into the MSA. Previous injection of a nonselective alpha -adrenergic antagonist, regitin, into the PVN blocked the urinary excretion, and reduced the water and sodium intake, sodium intake, and presser responses induced by ANG II injected into the MSA. The present results suggest that alpha -adrenergic pathways involving the PVN are important for the water and sodium excretion, urine and sodium excretion, and presser responses, induced by angiotensinergic activation of the MSA. (C) 2001 Elsevier B.V.
Resumo:
In this study we investigated the effects of the injection into the supraoptic nucleus (SON) of non-peptide AT1- and AT2-angiotensin II (ANG II) receptor antagonists, DuP753 and PD123319, as well as of the arginine-vasopressin (AVP) receptor antagonist d(CH2)5-Tyr(Me)-AVP, on water and 3% NaCl intake induced by the injection of ANG II into the medial septal area (MSA). The effects on water or 3% NaCl intake were assessed in 30-h water-deprived or in 20-h water-deprived furosemide-treated adult male rats, respectively. The drugs were injected in 0.5 µl over 30-60 s. Controls were injected with a similar volume of 0.15 M NaCl. Antagonists were injected at doses of 20, 80 and 180 nmol. Water and sodium intake was measured over a 2-h period. Previous administration of the AT1 receptor antagonist DuP753 into the SON decreased water (65%, N = 10, P<0.01) and sodium intake (81%, N = 8, P<0.01) induced by the injection of ANG II (10 nmol) into the MSA. Neither of these responses was significantly changed by injection of the AT2-receptor antagonist PD123319 into the SON. on the other hand, while there was a decrease in water intake (45%, N = 9, P<0.01), ANG II-induced sodium intake was significantly increased (70%, N = 8, P<0.01) following injection of the V1-type vasopressin antagonist d(CH2)5-Tyr(Me)-AVP into the SON. These results suggest that both AT1 and V1 receptors within the SON may be involved in water and sodium intake induced by the activation of ANG II receptors within the MSA. Furthermore, they do not support the involvement of MSA AT2 receptors in the mediation of these responses.
Resumo:
We investigated the role of alpha-adrenergic antagonists and clonidine injected into the medial septal area (MSA) on water intake and the decrease in Na+, K+ and urine elicited by ANGII injection into the third ventricle (3rdV). Male Holtzman rats with stainless steel cannulas implanted into the 3rdV and MSA were used. ANGII (12 nmol/µl) increased water intake (12.5 ± 1.7 ml/120 min). Clonidine (20 nmol/µl) injected into the MSA reduced the ANGII-induced water intake (2.9 ± 0.5 ml/120 min). Pretreatment with 80 nmol/µl yohimbine or prazosin into the MSA also reduced the ANGII-induced water intake (3.0 ± 0.4 and 3.1 ± 0.2 ml/120 min, respectively). Yohimbine + prazosin + clonidine injected into the MSA abolished the ANGII-induced water intake (0.2 ± 0.1 and 0.2 ± 0.1 ml/120 min, respectively). ANGII reduced Na+ (23 ± 7 µEq/120 min), K+ (27 ± 3 µEq/120 min) and urine volume (4.3 ± 0.9 ml/120 min). Clonidine increased the parameters above. Clonidine injected into the MSA abolished the inhibitory effect of ANGII on urinary sodium. Yohimbine injected into the MSA also abolished the inhibitory effects of ANGII. Yohimbine + clonidine attenuated the inhibitory effects of ANGII. Prazosin injected into the MSA did not cause changes in ANGII responses. Prazosin + clonidine attenuated the inhibitory effects of ANGII. The results showed that MSA injections of alpha1- and alpha2-antagonists decreased ANGII-induced water intake, and abolished the Na+, K+ and urine decrease induced by ANGII into the 3rdV. These findings suggest the involvement of septal alpha1- and alpha2-adrenergic receptors in water intake and electrolyte and urine excretion induced by central ANGII.
Resumo:
We determined the effects of losartan (40 nmol) and PD 123319 (40 nmol) (both non-peptides and selective antagonists of the AT1 and AT2 angiotensin receptors, respectively), and [Sar¹, Ala8] angiotensin II (ANG II) (40 nmol) (a non-selective peptide antagonist of angiotensin receptors) injected into the paraventricular nucleus (PVN) on the water and salt appetite, diuresis and natriuresis and mean arterial pressure (MAP) induced by administration of 10 nmol of ANG II into the medial septal area (MSA) of male Holtzman rats weighing 250-300 g. The volume of drug solution injected was 0.5 µl over a period of 10-15 s. The responses were measured over a period of 120 min. ANG II alone injected into the MSA induced an increase in all the above parameters (8.1 ± 1.2, 1.8 ± 0.3, and 17.1 ± 1.0 ml, 217 ± 25 µEq/120 min, and 24 ± 4 mmHg, respectively, N = 10-12) compared with vehicle-treated rats (1.4 ± 0.2, 0.6 ± 0.1, and 9.3 ± 0.5 ml, 47 ± 5 µEq/120 min, and 4.1 ± 0.8 mmHg, respectively, N = 10-14). Pretreatment with losartan and [Sar¹, Ala8] ANG II completely abolished the water and sodium intake, and the pressor increase (0.5 ± 0.2, 1.1 ± 0.2, 0.5 ± 0.2, and 0.8 ± 0.2 ml, and 1.2 ± 3.9, 31 ± 4.6 mmHg, respectively, N = 9-12), whereas losartan blunted the urinary and sodium excretion induced by ANG II (13.9 ± 1.0 ml and 187 ± 10 µEq/120 min, respectively, N = 9). Pretreatment with PD 123319 and [Sar¹, Ala8] ANG II blocked the urinary and sodium excretion (10.7 ± 0.8, 9.8 ± 0.7 ml, and 67 ± 13 and 57 ± 17 µEq/120 min, respectively, N = 9), whereas pretreatment with PD 123319 partially blocked the water and sodium intake, and the MAP induced by ANG II administration (2.3 ± 0.3, 1.1 ± 0.1 ml, and 12 ± 3 mmHg, respectively, N = 9-10). These results suggest the angiotensinergic effect of the MSA on the AT1 and AT2 receptors of the PVN in terms of water and sodium homeostasis and MAP modulation.
Resumo:
We determined the effects of two classical angiotensin II (ANG II) antagonists, [Sar(1), Ala(8)]-ANG II and [Sar(1), Thr(8)]-ANG II, and losartan (a nonpeptide and selective antagonist for the AT 1 angiotensin receptors) on diuresis, natriuresis, kaliuresis and arterial blood pressure induced by ANG II administration into the median preoptic nucleus (MnPO) of male Holtzman rats weighing 250-300 g. Urine was collected in rats submitted to a water load (5% body weight) by gastric gavage, followed by a second water load (5% body weight) 1 h later. The volume of the drug solutions injected was 0.5 mu l over 10-15 s. Pre-treatment with [Sar(1), Ala(8)]-ANG II (12 rats) and [Sar(1), Thr(8)]-ANG II (9 rats), at the dose of 60 ng reduced (13.7 +/- 1.0 vs 11.0 +/- 1.0 and 10.7 +/- 1.2, respectively), whereas losartan (14 rats) at the dose of 160 ng totally blocked (13.7 +/- 1.0 vs 7.6 +/- 1.5) the urine excretion induced by injection of 12 ng of ANG II (14 rats). [Sar(1), Ala(8)]-ANG II impaired Na+ excretion (193 +/- 16 vs 120 +/- 19): whereas [Sar(1), Thr(8)]-ANG II and losartan blocked Na+ excretion (193 +/- 16 vs 77 +/- 15 and 100 +/- 12, respectively) induced by ANG II. Similar effects induced by ANG II on K+ excretion were observed with [Sar(1), Ala(8)]-ANG II, [Sar(1), Thr(8)]-ANG II, and losartan pretreatment (133 +/- 18 vs 108 +/- 11, 80 +/- 12, and 82 +/- 15, respectively). The same doses as above of [Sar(1), Ala(8)]-ANG II (8 rats), [Sar(1), Thr(8)]-ANG II (8 rats). and losartan (9 rats) blocked the increase in the arterial blood pressure induced by 12 ng of ANG II (12 rats) (32 +/- 4 ru 4 +/- 2, 3.5 +/- 1, and 2 +/- 1: respectively. The results indicate that the AT1 receptor subtype participates in the increases of diuresis, natriuresis. kaliuresis and arterial blood pressure induced by the administration of ANG II into the MnPO.