984 resultados para AND ASTRONOMY Corona
Resumo:
Logo for the school of Physics and Astronomy in Inkscape SVG, PDF and high-resolution PNG format
Resumo:
Bound volume containing a late 17th century handwritten mathematical and astronomical text in one hand. The text is separated into mathematical and astronomical sections with rules, instructions for performing calculations, tables, and drawings. The subjects include arithmetic, geometry, astronomy, and trigonometry, and segments have titles such as "Subtraction," "A decimal table of English coince," "Logarithes & their use," and "To find the true place of the sun." The text is undated and unattributed but references Briggs, Oughtred, Ramus, and Apollonius. Certain tables are calculated from latitudinal and longitudinal numbers associated with Boston, and many of the examples use dates in the 1670s and 1680. The manuscript pages are mounted onto unruled pages, and some of the manuscript pages are fragments.
Resumo:
Bound with this (publisher's binding) is a catalog of books published by G. Bell and sons dated 1896.
Resumo:
Apéndice y tablas.
Resumo:
Includes index.
Resumo:
Includes "Horology and astronomy" only.
Resumo:
Mode of access: Internet.
Resumo:
Located on the campus of the University of Michigan at Ann Arbor, this building houses the offices of the department of Physics and Astronomy classrooms, lecture rooms, research areas, laboratories and staff offices. Lecture halls and libraries are in the connecting wing.
Resumo:
Added t.p., illustrated.
Resumo:
As defined by the European Union, “ ’Nanomaterial’ (NM) means a natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or agglomerate, where, for 50 % or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm-100 nm ” (2011/696/UE). Given their peculiar physico-chemical features, nanostructured materials are largely used in many industrial fields (e.g. cosmetics, electronics, agriculture, biomedical) and their applications have astonishingly increased in the last fifteen years. Nanostructured materials are endowed with very large specific surface area that, besides making them very useful in many industrial processes, renders them very reactive towards the biological systems and, hence, potentially endowed with significant hazard for human health. For these reasons, in recent years, many studies have been focused on the identification of toxic properties of nanostructured materials, investigating, in particular, the mechanisms behind their toxic effects as well as their determinants of toxicity. This thesis investigates two types of nanostructured TiO2 materials, TiO2 nanoparticles (NP), which are yearly produced in tonnage quantities, and TiO2 nanofibres (NF), a relatively novel nanomaterial. Moreover, several preparations of MultiWalled Carbon Nanotubes (MWCNT), another nanomaterial widely present in many products, are also investigated.- Although many in vitro and in vivo studies have characterized the toxic properties of these materials, the identification of their determinants of toxicity is still incomplete. The aim of this thesis is to identify the structural determinants of toxicity, using several in vitro models. Specific fields of investigation have been a) the role of shape and the aspect ratio in the determination of biological effects of TiO2 nanofibres of different length; b) the synergistic effect of LPS and TiO2 NP on the expression of inflammatory markers and the role played therein by TLR-4; c) the role of functionalization and agglomeration in the biological effects of MWCNT. As far as biological effects elicited by TiO2 NF are concerned, the first part of the thesis demonstrates that long TiO2 nanofibres caused frustrated phagocytosis, cytotoxicity, hemolysis, oxidative stress and epithelial barrier perturbation. All these effects were mitigated by fibre shortening through ball-milling. However, short TiO2 NF exhibited enhanced ability to activate acute pro-inflammatory effects in macrophages, an effect dependent on phagocytosis. Therefore, aspect ratio reduction mitigated toxic effects, while enhanced macrophage activation, likely rendering the NF more prone to phagocytosis. These results suggest that, under in vivo conditions, short NF will be associated with acute inflammatory reaction, but will undergo a relatively rapid clearance, while long NF, although associated with a relatively smaller acute activation of innate immunity cells, are not expected to be removed efficiently and, therefore, may be associated to chronic inflammatory responses. As far as the relationship between the effects of TiO2 NP and LPS, investigated in the second part of the thesis, are concerned, TiO2 NP markedly enhanced macrophage activation by LPS through a TLR-4-dependent intracellular pathway. The adsorption of LPS onto the surface of TiO2 NP led to the formation of a specific bio-corona, suggesting that, when bound to TiO2 NP, LPS exerts a much more powerful pro-inflammatory effect. These data suggest that the inflammatory changes observed upon exposure to TiO2 NP may be due, at least in part, to their capability to bind LPS and, possibly, other TLR agonists, thus enhancing their biological activities. Finally, the last part of the thesis demonstrates that surface functionalization of MWCNT with amino or carboxylic groups mitigates the toxic effects of MWCNT in terms of macrophage activation and capability to perturb epithelial barriers. Interestingly, surface chemistry (in particular surface charge) influenced the protein adsorption onto the MWCNT surface, allowing to the formation of different protein coronae and the tendency to form agglomerates of different size. In particular functionalization a) changed the amount and the type of proteins adsorbed to MWCNT and b) enhanced the tendency of MWCNT to form large agglomerates. These data suggest that the different biological behavior of functionalized and pristine MWCNT may be due, at least in part, to the different tendency to form large agglomerates, which is significantly influenced by their different capability to interact with proteins contained in biological fluids. All together, these data demonstrate that the interaction between physico-chemical properties of nanostructured materials and the environment (cells + biological fluids) in which these materials are present is of pivotal importance for the understanding of the biological effects of NM. In particular, bio-persistence and the capability to elicit an effective inflammatory response are attributable to the interaction between NM and macrophages. However, the interaction NM-cells is heavily influenced by the formation at the nano-bio interface of specific bio-coronae that confer a novel biological identity to the nanostructured materials, setting the basis for their specific biological activities.
Resumo:
Abstract Heading into the 2020s, Physics and Astronomy are undergoing experimental revolutions that will reshape our picture of the fabric of the Universe. The Large Hadron Collider (LHC), the largest particle physics project in the world, produces 30 petabytes of data annually that need to be sifted through, analysed, and modelled. In astrophysics, the Large Synoptic Survey Telescope (LSST) will be taking a high-resolution image of the full sky every 3 days, leading to data rates of 30 terabytes per night over ten years. These experiments endeavour to answer the question why 96% of the content of the universe currently elude our physical understanding. Both the LHC and LSST share the 5-dimensional nature of their data, with position, energy and time being the fundamental axes. This talk will present an overview of the experiments and data that is gathered, and outlines the challenges in extracting information. Common strategies employed are very similar to industrial data! Science problems (e.g., data filtering, machine learning, statistical interpretation) and provide a seed for exchange of knowledge between academia and industry. Speaker Biography Professor Mark Sullivan Mark Sullivan is a Professor of Astrophysics in the Department of Physics and Astronomy. Mark completed his PhD at Cambridge, and following postdoctoral study in Durham, Toronto and Oxford, now leads a research group at Southampton studying dark energy using exploding stars called "type Ia supernovae". Mark has many years' experience of research that involves repeatedly imaging the night sky to track the arrival of transient objects, involving significant challenges in data handling, processing, classification and analysis.
Resumo:
In this thesis, we will explore approaches to faculty instructional change in astronomy and physics. We primarily focus on professional development (PD) workshops, which are a central mechanism used within our community to help faculty improve their teaching. Although workshops serve a critical role for promoting more equitable instruction, we rarely assess them through careful consideration of how they engage faculty. To encourage a shift towards more reflective, research-informed PD, we developed the Real-Time Professional Development Observation Tool (R-PDOT), to document the form and focus of faculty's engagement during workshops. We then analyze video-recordings of faculty's interactions during the Physics and Astronomy New Faculty Workshop, focusing on instances where faculty might engage in pedagogical sense-making. Finally, we consider insights gained from our own local, team-based effort to improve a course sequence for astronomy majors. We conclude with recommendations for PD leaders and researchers.
Resumo:
Passiflora edulis, the passion fruit native from Brazil, has several common names (such as sour passion fruit, yellow passion fruit, black passion fruit, and purple passion fruit), and presents a wide variability with the different rind colors of its fruits, which are very easy to notice. However, in 1932, Otto Degener suggested that the yellow passion fruit had its origin in Australia through breeding, calling it P. edulis forma flavicarpa, and that it could be distinguished by the color of the fruit, the deeper shade of purple of the corona, and the presence of glands on the sepals. These distinctions do not support themselves, for the glands are common to the species (although they may be absent), and the corona has a wide range of colors, regardless of the color of the fruit. A more critical ingredient is the fact that the external coloration of the fruit is a character of complex inheritance and is not dominant, thus displaying a number of intermediate colors, making it difficult to identify the extreme colors. For the correct scientific naming of agricultural plants, the International Code of Botanical Nomenclature must be used in conjunction with the International Code of Nomenclature for Cultivated Plants, with the selections with significant agronomic characteristics recognized and named cultivars. In accordance with the international convention promoted by the UPOV, of which Brazil is a signatory, several colors (light yellow, yellow, orange yellow, pink red, red, red purple, green purple, purple, and dark purple) can be recognized in order to adequately characterize passion fruit cultivars within the species P. edulis. At taxonomic level, Passiflora edulis Sims must be used for any plant and color of sour passion fruits, in combination with a cultivar name for the selected materials.
Resumo:
Population studies of unidentified EGRET sources suggest that there exist at least three different populations of galactic gamma-ray sources. One of these populations is formed by young objects distributed along the galactic plane with a strong concentration toward the inner spiral arms of the Galaxy. Variability, spectral and correlation analysis indicate that this population is not homogeneous. In particular, there is a subgroup of sources that display clear variability in their gamma-ray fluxes on timescales from days to months. Following the proposal by Kaufman Bernad\'o et al. (2002), we suggest that this group of sources might be high-mass microquasars, i.e. accreting black holes or neutron stars with relativistic jets and early-type stellar companions. We present detailed inhomogeneous models for the gamma-ray emission of these systems that include both external and synchrotron self-Compton interactions. We have included effects of interactions between the jet and all external photon fields to which it is exposed: companion star, accretion disk, and hot corona. We make broadband calculations to predict the spectral energy distribution of these objects from radio up to GeV energies. The results and predictions can be tested by present and future gamma-ray instruments like INTEGRAL, AGILE, and GLAST.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal