840 resultados para ALZHEIMERS-DISEASE PATIENTS
Resumo:
In an unprecedented finding, Davis et al. [Davis, R. E., Miller, S., Herrnstadt, C., Ghosh, S. S., Fahy, E., Shinobu, L. A., Galasko, D., Thal, L. J., Beal, M. F., Howell, N. & Parker, W. D., Jr. (1997) Proc. Natl. Acad. Sci. USA 94, 4526–4531] used an unusual DNA isolation method to show that healthy adults harbor a specific population of mutated mitochondrial cytochrome c oxidase (COX) genes that coexist with normal mtDNAs. They reported that this heteroplasmic population was present at a level of 10–15% in the blood of normal individuals and at a significantly higher level (20–30%) in patients with sporadic Alzheimer’s disease. We provide compelling evidence that the DNA isolation method employed resulted in the coamplification of authentic mtDNA-encoded COX genes together with highly similar COX-like sequences embedded in nuclear DNA (“mtDNA pseudogenes”). We conclude that the observed heteroplasmy is an artifact.
Resumo:
The spatial patterns of the diffuse, primitive, and classic beta-amyloid (Abeta) deposits was studied in the frontal and temporal cortex in cases of Alzheimer’s disease (AD) expressing different apolipoprotein (Apo E) genotypes. No significant differences in the density of the three Abeta deposit subtypes were observed in individuals expressing genotypes e2/3 and e3/3 compared with those expressing e3/4 and e4/4. In all patients, Abeta deposit subtypes occurred in the tissue in clusters. Chi-square contingency analyses of the data suggested that the cluster size of the diffuse and classic Abeta deposits was unrelated to Apo E genotype. However, the primitive (‘neuritic’) type Abeta deposits occurred more frequently in smaller, denser clusters in individuals expressing genotypes e3/4 and e4/4 compared with those expressing e2/3 and e3/3. Hence, the presence of the e4 allele may be associated with a more specific pattern of neuronal degeneration in the frontal and temporal cortex in AD.
Resumo:
Verbal fluency is the ability to produce a satisfying sequence of spoken words during a given time interval. The core of verbal fluency lies in the capacity to manage the executive aspects of language. The standard scores of the semantic verbal fluency test are broadly used in the neuropsychological assessment of the elderly, and different analytical methods are likely to extract even more information from the data generated in this test. Graph theory, a mathematical approach to analyze relations between items, represents a promising tool to understand a variety of neuropsychological states. This study reports a graph analysis of data generated by the semantic verbal fluency test by cognitively healthy elderly (NC), patients with Mild Cognitive Impairment – subtypes amnestic(aMCI) and amnestic multiple domain (a+mdMCI) - and patients with Alzheimer’s disease (AD). Sequences of words were represented as a speech graph in which every word corresponded to a node and temporal links between words were represented by directed edges. To characterize the structure of the data we calculated 13 speech graph attributes (SGAs). The individuals were compared when divided in three (NC – MCI – AD) and four (NC – aMCI – a+mdMCI – AD) groups. When the three groups were compared, significant differences were found in the standard measure of correct words produced, and three SGA: diameter, average shortest path, and network density. SGA sorted the elderly groups with good specificity and sensitivity. When the four groups were compared, the groups differed significantly in network density, except between the two MCI subtypes and NC and aMCI. The diameter of the network and the average shortest path were significantly different between the NC and AD, and between aMCI and AD. SGA sorted the elderly in their groups with good specificity and sensitivity, performing better than the standard score of the task. These findings provide support for a new methodological frame to assess the strength of semantic memory through the verbal fluency task, with potential to amplify the predictive power of this test. Graph analysis is likely to become clinically relevant in neurology and psychiatry, and may be particularly useful for the differential diagnosis of the elderly.
Resumo:
To determine whether pathogenic mutations in mtDNA are involved in phenotypic expression of Alzheimer’s disease (AD), the transfer of mtDNA from elderly patients with AD into mtDNA-less (ρ0) HeLa cells was carried out by fusion of platelets or synaptosomal fractions of autopsied brain tissues with ρ0 HeLa cells. The results showed that mtDNA in postmortem brain tissue survives for a long time without degradation and could be rescued in ρ0 HeLa cells. Next, the cybrid clones repopulated with exogenously imported mtDNA from patients with AD were used for examination of respiratory enzyme activity and transfer of mtDNA with the pathogenic mutations that induce mitochondrial dysfunction. The presence of the mutated mtDNA was restricted to brain tissues and their cybrid clones that formed with synaptosomes as mtDNA donors, whereas no cybrid clones that isolated with platelets as mtDNA donors had detectable mutated mtDNA. However, biochemical analyses showed that all cybrid clones with mtDNA imported from platelets or brain tissues of patients with AD restored mitochondrial respiration activity to almost the same levels as those of cybrid clones with mtDNA from age-matched normal controls, suggesting functional integrity of mtDNA in both platelets and brain tissues of elderly patients with AD. These observations warrant the reassessment of the conventional concept that the accumulation of pathogenic mutations in mtDNA throughout the aging process is responsible for the decrease of mitochondrial respiration capacity with age and with the development of age-associated neurodegenerative diseases.
Resumo:
A Principal Components Analysis of neuropathological data from 79 Alzheimer’s disease (AD) cases was performed to determine whether there was evidence for subtypes of the disease. Two principal components were extracted from the data which accounted for 72% and 12% of the total variance respectively. The results suggested that 1) AD was heterogeneous but subtypes could not be clearly defined; 2) the heterogeneity, in part, reflected disease onset; 3) familial cases did not constitute a distinct subtype of AD and 4) there were two forms of late onset AD, one of which was associated with less senile plaque and neurofibrillary tangle development but with a greater degree of brain atherosclerosis.
Resumo:
The size frequency distributions of diffuse, primitive and cored senile plaques (SP) were studied in single sections of the temporal lobe from 10 patients with Alzheimer’s disease (AD). The size distribution curves were unimodal and positively skewed. The size distribution curve of the diffuse plaques was shifted towards larger plaques while those of the neuritic and cored plaques were shifted towards smaller plaques. The neuritic/diffuse plaque ratio was maximal in the 11 – 30 micron size class and the cored/ diffuse plaque ratio in the 21 – 30 micron size class. The size distribution curves of the three types of plaque deviated significantly from a log-normal distribution. Distributions expressed on a logarithmic scale were ‘leptokurtic’, i.e. with excess of observations near the mean. These results suggest that SP in AD grow to within a more restricted size range than predicted from a log-normal model. In addition, there appear to be differences in the patterns of growth of diffuse, primitive and cored plaques. If neuritic and cored plaques develop from earlier diffuse plaques, then smaller diffuse plaques are more likely to be converted to mature plaques.
Resumo:
The density of the diffuse, primitive and classic beta-amyloid (Abeta) deposits and the incidence of large and small diameter blood vessels was studied in the upper laminae of the frontal cortex of 10 patients with sporadic Alzheimer’s disease (AD). The data were analysed using the partial correlation coefficient to determine whether variations in the density of Abeta deposit subtypes along the cortex were related to blood vessels. Significant correlations between the density of the diffuse or primitive Abeta deposits and blood vessels were found in only a small number of patients. However, the classic Abeta deposits were positively correlated with the large blood vessels in all 10 patients, the correlations remaining when the effects of gyral location and mutual correlations between Abeta deposits were removed. These results suggest that the larger blood vessels are involved specifically in the formation of the classic Abeta deposits and are less important in the formation of the diffuse and primitive deposits.
Resumo:
The laminar distribution of diffuse, primitive and classic beta-amyloid (Abeta) deposits and blood vessels was studied in the frontal cortex of patients with Alzheimer’s disease (AD). In most patients, the density of the diffuse and primitive Abeta deposits was greatest in the upper cortical layers and the classic deposits in the deeper cortical layers. The distribution of the larger blood vessels (>10 micron in diameter) was often bimodal with peaks in the upper and deeper cortical layers. The incidence of capillaries (<10 micron) was significantly higher in the deeper cortical layers in most patients. Multiple regression analysis selected vertical distance below the pia mater as the most significant factor correlated with the Abeta deposit density. With the exception of the classic deposits in two patients, there was no evidence that these vertical distributions were related to laminar variations in the incidence of large or small blood vessels.
Resumo:
The levels of neopterin, biopterin and the neopterin/biopterin ratio (N/B) were measured in urine samples taken from normal young and elderly control subjects, exceptionally healthy elderly control subjects classified according to the ‘Senieur’ protocol and patients with Down’s syndrome (DS) or Alzheimer’s disease (AD). The N/B ratio was approximately unity in control groups with the exception of the normal elderly controls. The levels of neopterin and biopterin declined with age in the exceptionally healthy ‘Senieur’ control group. The N/B ratio was elevated in young and old DS patients as a result of the significant increase in neopterin. Neopterin levels were significantly elevated in AD patients compared with the healthy elderly controls, but this did not result in a significant increase in the N/B ratio in these patients. The N/B ratio increased with age in AD patients as a result of a decline in biopterin. These results suggested that there is a cellular immune reponse in DS and AD patients which in DS, may precede the formation of beta-amyloid deposits in the brain. In addition, there may be a deficiency in tetrahydrobiopterin biosynthesis in AD which becomes more marked with age.
Resumo:
The spatial patterns of diffuse, primitive, classic and compact beta-amyloid (Abeta) deposits were studied in the medial temporal lobe in 14 elderly, non-demented patients (ND) and in nine patients with Alzheimer’s disease (AD). In both patient groups, Abeta deposits were clustered and in a number of tissues, a regular periodicity of Abeta deposit clusters was observed parallel to the tissue boundary. The primitive deposit clusters were significantly larger in the AD cases but there were no differences in the sizes of the diffuse and classic deposit clusters between patient groups. In AD, the relationship between Abeta deposit cluster size and density in the tissue was non-linear. This suggested that cluster size increased with increasing Abeta deposit density in some tissues while in others, Abeta deposit density was high but contained within smaller clusters. It was concluded that the formation of large clusters of primitive deposits could be a factor in the development of AD.