804 resultados para ALLYLIC ALCOHOLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Described herein is a one-pot synthesis of a,p-epoxy ketones using a palladium-catalyzed epoxidation-oxidation sequence. Functionalized terminal allylic alcohols are treated with m-CPBA Under mild reaction conditions to obtain the alpha,beta-epoxy ketones. The main benefit of this approach is that the epoxidation of the terminal double bond and the oxidation of the secondary alcohol occured in the same reaction under mild reactions and both electron-donating and electron-withdrawing functionalities are tolerated in the reaction sequence. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction of geraniol with different lithium carbenoids generated from n-BuLi and the corresponding dihaloalkane has been evaluated. The reaction occurs in a chemo and stereoselective manner, which is consistent with a directing effect from the oxygen of the allylic moiety. Furthermore, a set of polyenes containing allylic hydroxyl or ether groups were chemoselectively and stereoselectively converted into the corresponding gemdimethylcyclopropanes in one single step in moderate to good yields mediated by a lithium carbenoid generated in situ by reaction of n-BuLi and 2,2-dibromopropane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The allylic substitution reaction, and particularly the direct allylic amination reaction, of free allylic alcohols in water catalyzed by FeCl3⋅6 H2O is described. This novel environmentally-friendly methodology allows the use of a wide variety of nitrogenated nucleophiles such as sulfonamides, carbamates, benzamides, anilines, benzotriazoles, and azides, generally giving good yields of the corresponding substitution products. The synthetic applicability of the process is also demonstrated because the reaction can be performed on gram-scale. Additionally, carbon nucleophiles such as silylated nucleophiles, aromatic compounds, and malonates also proved to be suitable for this transformation. Finally, the nature of the catalytic species present in aqueous media is unveiled, pointing towards the formation of hexaaquo iron(III) complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first organocatalyzed asymmetric alkylation of activated methylene compounds using benzylic and allylic alcohols as alkylating agents through dual hydrogen bond activation in an SN1-type reaction is reported. This green protocol employs a bis(2-aminobenzoimidazole) in combination with an achiral Brønsted acid as a bifunctional catalytic system and gives the alkylation products with moderate to good enantioselectivities. Although the scope of the reaction is limited, this methodology can be considered as complementary to existing metal-catalyzed processes. In addition, modest results were obtained in a first attempt to perform a metal-free asymmetric Tsuji–Trost reaction using allylic alcohols. Finally, the recovery and reusability of the organocatalyst is also achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two series of mesoporous hybrid iron(III) complex–silica aerogels were prepared in one-pot synthesis by using the sol–gel coordination chemistry approach. The use of the ligands 3-(2-aminoethylamino)propyltrimethoxysilane and 2-(diphenylphosphino)ethyltriethoxysilane, both with terminal triethoxysilyl groups, were used to incorporate metal complexes in situ into the framework of silica, through their co-condensation with a silicon alkoxide during the aerogel formation. This methodology yielded optically translucent hybrid mesoporous gels with homogeneous metal incorporation and excellent textural properties. The catalytic performance of these materials was tested in the direct amination of allylic alcohols in water as a target reaction, with activities comparable or even higher than those corresponding to the homogeneous iron(III) complex. Furthermore, these catalysts were stable and maintained their catalytic activity after six reaction cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surfactant templating offers a simple route to synthesize high-surface area silicas with ordered, tunable mesopore architectures. The use of these materials as versatile catalyst supports for palladium nanoparticles has been explored in the aerobic selective oxidation (selox) of allylic alcohols under mild conditions. Families of Pd/mesoporous silicas, synthesized through incipient wetness impregnation of SBA-15, SBA-16, and KIT-6, have been characterized by using nitrogen porosimetry, CO chemisorption, diffuse reflection infrared Fourier transform spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and high-resolution TEM and benchmarked in liquid phase allylic alcohol selox against a Pd/amorphous SiO2 standard. The transition from amorphous to two-dimensional parallel and three-dimensional interpenetrating porous silica networks conferred significant selox rate enhancements associated with higher surface densities of active palladium oxide sites. Dissolved oxygen was essential for insitu stabilization of palladium oxide, and thus maintenance of high activity on-stream, whereas selectivity to the desired aldehyde selox product over competing hydrogenolysis pathways was directed by using palladium metal. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly ordered mesoporous alumina was prepared via evaporation induced self assembly and was impregnated to afford a family of Pd/meso-Al2O3 catalysts for the aerobic selective oxidation (selox) of allylic alcohols under mild reaction conditions. CO chemisorption and XPS identify the presence of highly dispersed (0.9–2 nm) nanoparticles comprising heavily oxidised PdO surfaces, evidencing a strong palladium-alumina interaction. Surface PdO is confirmed as the catalytically active phase responsible for allylic alcohol selox, with initial rates for Pd/meso-Al2O3 far exceeding those achievable for palladium over either amorphous alumina or mesoporous silica supports. Pd/meso-Al2O3 is exceptionally active for the atom efficient selox of diverse allylic alcohols, with activity inversely proportional to alcohol mass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The utility of a hierarchically ordered nanoporous SBA-15 architecture, comprising 270 nm macropores and 5 nm mesopores (MM-SBA-15), for the catalytic aerobic selective oxidation of sterically challenging allylic alcohols is shown. Detailed bulk and surface characterization reveals that incorporation of complementary macropores into mesoporous SBA-15 enhances the dispersion of sub 2 nm Pd nanoparticles and thus their degree of surface oxidation. Kinetic profiling reveals a relationship between nanoparticle dispersion and oxidation rate, identifying surface PdO as the catalytically active phase. Hierarchical nanoporous Pd/MM-SBA-15 outperforms mesoporous analogues in allylic alcohol selective oxidation by (i) stabilizing PdO nanoparticles and (ii) dramatically improving in-pore diffusion and access to active sites by sesquiterpenoid substrates such as farnesol and phytol. © 2013 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pd does it alone : Tailored heterogeneous catalysts offer exciting, alternative, clean technologies for regioselective molecular transformations. A mesoporous alumina support stabilizes atomically dispersed PdII surface sites (see picture, C light gray, O red, Pd dark gray, Al purple, H white), thereby dramatically enhancing catalytic performance in the aerobic selective oxidation of alcohols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct nucleophilic substitution reactions of allylic alcohols are environmentally friendly, since they generate only water as a byproduct, allowing access to new allylic compounds. This reaction has, thus, attracted the interest of the chemical community and several strategies have been developed for its successful accomplishment. This review gathers the latest advances in this methodology involving SN1-type reactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxidovanadium complexes and, to a less extent, some non-oxido ones, are widely used as catalysts or catalyst precursors for various oxidative catalytic reactions by H2O2, (BuOOH)-Bu-t or O-2 under mild conditions. Oxidation reactions (oxidation of alkanes and alcohols, epoxidation of alkenes and allylic alcohols, oxidative bromination, sulfoxidation and oxidative Strecker reactions) of organic compounds are the most relevant ones and are reviewed considering the recent advances in the last five years (2010-2014). The main types of both homogeneous and supported vanadium catalysts and the most efficient catalytic systems in the different reactions are presented and compared. The proposed mechanisms of various catalytic oxidation processes are also outlined. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Chemistry

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reduction of five substituted octalones employing lithium tri-sec-butylborohydride (L-selectride®) in THF and ethyl ether led to allylic alcohols with moderate diastereoselectivity. The stereoselectivity of addition of bulky hydrides showed to be different from most examples in the literature and was strongly influenced by substitution on the octalone ring.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reactions of 5,6- and 4,5-epoxycholestane derivatives with strong bases were investigated. Epoxidation of 3a-acetoxycholest-5-ene also gave a new compound along with the anticipated epoxides. Interconversions of the latter were observed. Some possible mechanisms of its formation and rearrangements have been pIioposed. No reaction was observed with any of the 5,6- and 4,5-steroidal epoxides employed in the present study, using potassium tertiary butoxide under refluxing conditions. n-Butyllithium reacted only with 5,6-epoxycholestanes bearing a ketal moiety at the C3 carbon. Opening of the ketal group was observed with n-butyllithium in the case of a ~-epoxide. The reaction was also investigated in the absence of epoxide functionality. A possible mechanism for the opening of ketal group has been proposed. Lithium diethylamide (LDEA) was found effective in rearranging 5,6- and 4,5-epoxides to their ~orresponding allylic alcohols. These rearrangements presumably proceed via syn-eliminations, however the possibility of a corresponding anti-elimination has not been eliminated. A substituent effect of various functional groups (R = H, OH, OCH2CH20) at C3 has-been observed on product distribution in the LDEApromoted rearrangements of the corresponding epoxides. No reaction of these epoxides was observed with lithium diisopropylamide (LDA) • In the second part of the project, several attempts were made towards the sYRthesis of deoxycorticoste~one~17,2l,2l~d3' a compound desirable for the 2l-dehydroxylation studies of deoxycorticosterone. Several routes were investigated, and some deuterium labelled pregnane derivatives were prepared in this regard. Microbial 21-hydroxylation of progesteronel7,21,21,2l- d4 by ~ niger led to loss of deuterium from C21 of the product. An effort was made to hydroxylate progesterone microbially under neutral condtions.