197 resultados para ALKOXIDE INITIATORS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alkyl aluminium alkoxides have been used as initiators for the ring opening polymerisation of ε-caprolactone and δ-valerolactone. The effect of the reaction solvent on the kinetics of the polymerisation of ε-caprolactone has been studied. The rate of polymerisation was found to be faster in solvents of lower polarity and donor nature such as toluene. In general solvents of higher polarity resulted in a decreased rate of polymerisation. However solvents such as THF or DMF with a lone pair of electrons capable of forming a complex with the aluminium centre slowed the polymerisation further. The size of the monomer also proved to be an important factor in the kinetics of the reaction. The six membered ring, δ-valerolactone has less ring strain than the seven membered ring ε-caprolactone and thus the polymerisation of δ-valerolactone is slower than the corresponding polymerisation of ε-caprolactone. Both the alkoxide and alkyl group structures have an effect on the polymerisation. In general bulkier alkoxide groups provide greater steric hindrance around the active site at the beginning of the reaction. This causes an induction or a build up period that is related to the both the steric hindrance and also the electronic effects provided by the alkoxide group. The alkyl group structure has an effect throughout the polymerisation because it remains adjacent to the active centre. The number of alkoxide groups on the aluminium centre is also important, using a dialkoxide as an initiator yields polymers with molecular weights approximately half that of the corresponding reactions using a mono alkoxide. Transesterification reactions have also been found to occur after most of the monomer has been consumed. These transesterification reactions are exaggerated as temperature increases. A method of producing tri-block co-polymers has also been developed. A di-hydroxy functional pre-polymer, PHBV, was reacted with an aluminium alkyl to form a di-alkoxide macroinitiator which was subsequently used as an initiator for the polymerisation of ε-caprolactone to form an ABA type tri-block co-polymer. The molecular weight and other properties were predictable from the initial monomer/initiator ratios.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of aluminum ethyls and isopropoxides based on a bis(pyrrolidene) Schiff base ligand framework has been prepared and characterized. NMR studies of the dissolved complexes indicate that they adopt a symmetric structure with a monomeric, five-coordinated aluminum center core. The aluminum ethyls used as catalysts in the presence of 2-propanol as initiator and the aluminum isopropoxides were applied for lactide polymerization in toluene to test their activities and stereoselectivities. All polymerizations are living, as evidenced by the narrow polydispersities and the good fit between calculated and found number-average molecular weights of the isolated polymers. All of these aluminum complexes polymerized (S,S)-lactide to highly isotactic PLA without epimerization of the monomer, furnished isotactic-biased polymer from rac-lactide, and gave atactic polymer from meso-lactide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The research described in this thesis explored the synthesis tlnd characteristltion of biocompatible and biodegradable polymers of lactide through non-toxic titanium alkoxide nitiators. The research objectives focused on the preparation of polylactides in both solvent and solventless media, to produce materials with a wide range of molecular weights. The polylactides were fully characterised using gel permeation chromatography and 1H and 13C NMR spectroscopy. NMR spectroscopy was carried out in the study the reaction mechanisms. Kinetic studies of the ring opening polymerisation of lactide with titanium alkoxide initiators were also conducted using NMR spectroscopy. The objectives of this research were also focused on the enhancement of the flexibility of the polymer chains by synthesising random and block copolymers of lactide and ε-caprolactone using Ti(0-i-Pr)4 as an initiator, This work involved extensive characterisalion of the synthesised copolymers using gel permeation chromatography and 1H and 13C NMR spectroscopic analysis. Kinetic studies of the ring opening polymerisation of ε-caplrolactone and of the copolymerisation of lactide and ε-caprolactone with Ti(O-i-Pr)4 as an initiator were also carried out. The last section of this work involved the synthesis of block and star-shaped copolymers of lactide and poly(ethylene glycol) [PEG]. The preparation of lactide/PEG block copolymers was carried out by ring opening polymerisation of L-Iactide using Ti(O-i-Pr)4 as an initiator and hydroxyl-terminated PEG's with different numbers of hydroxyl groups as co-initiators both in solution and solventless media. These all-in-one polymersations yielded the synthesis of both lactide homopolymer and lactide/PEG block copolymer. In order to selectively synthesise copolymers of lactide and PEG, the experiment was carried out in two steps. The first step consisted of the synthesis of a titanium macro-initiator by exchanging the iso-propoxide ligands by PEG with different numbers of hydroxyl groups. The second step involved the ring opening polymerisation of lactide using the titanium macrocatalyst that was prepared as an initiator. The polymerisations were carried out in a solventless media. The synthesis of lactide/PEG copolymers using polyethylene glycol with amino terminal groups was also discussed. Extensive characterisation of the lactide block copolymers and macroinitiators was carried out using techniques such as, gel permeation chromatography (GPC), NMR spectroscopy and differential scanning calorimeter (DeS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic Fe—Mn alkoxide of glycerol samples are submitted to controlled heating conditions and examined by IR absorption spectroscopy. On the other hand, the same sample is studied by infrared emission spectroscopy (IRES), upon heating in situ from 100 to 600°C. The spectral techniques employed in this contribution, especially IRES, show that as a result of the thermal treatments ferromagnetic oxides (manganese ferrite) are formed between 350 and 400°C. Some further spectral changes are seen at higher temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ring-opening thermal polymerization of hexachlorocyclotriphosphazene (N3P3C&h)a s been investigated at 250 "C and at 1.333-Pa pressure using chlorocyclotriphosphazenes N3P3C15(N=PPh3) and N3P3Cl,.,(NMe2), (n = 2-4), salt hydrates, triphenylphosphine, and benzoic acid as initiators. The linear poly (dich1orophosphazene) products are phenoxylated, and the phenoxy polymers are characterized by gel permeation chromatography and dilute solution viscometry. Among the various initiators investigated, CaS04.2H20b rings about a high conversion (>60%) of N3P3C&to the linear [NPC12], polymer which possesses a high molecular weight (>5 X lo6). The rationale for the choice of the initiators and possible mechanism(s) of polymerization is discussed. Several mixed substituent polymers, [NP(OPh),(OC6H4Me-p)2,1, and [NP(OPh),(OCHzCF3)2,]nh, ave been prepared and their thermal properties evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thiophosphoryl fluoride and phosphoryl fluoride have been found to initiate the polymerisation of tetrahydrofuran. The living polymer formed has a high molecular weight of the order of a million and the density is found to be between 0.98 - 1.02 g/cc. A cationic mechanism for the polymerisation has been proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the use of poly(alpha-methylstyrene peroxide) (P alpha MSP), an alternating copolymer of alpha-methylstyrene and oxygen, as initiator for the radical polymerization of vinyl monomers. Thermal decomposition of P alpha MSP in 1,4-dioxane follows first-order kinetics with an activation energy (E(a)) of 34.6 kcal/mol. Polymerization of methyl methacrylate (MMA) and styrene using P alpha MSP as an initiator was carried out in the temperature range 60-90 degrees C. The kinetic order with respect to the initiator and the monomer was close to 0.5 and 1.0, respectively, for both monomers. The E(a) for the polymerization was 20.6 and 22.9 kcal/mol for MMA and styrene, respectively. The efficiency of P alpha MSP was found to be in the range 0.02-0.04. The low efficiency of P alpha MSP was explained in terms of the unimolecular decomposition of the alkoxy radicals which competes with primary radical initiation. The presence of peroxy segments in the main chain of PMMA and polystyrene was confirmed from spectroscopic and DSC studies. R(i)'/2I values for P alpha MSP compared to that of BPO at 80 degrees C indicate that P alpha MSP can be used as an effective high-temperature initiator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The olefin metathesis reaction has found many applications in polymer synthesis and more recently in organic synthesis. The use of single component late metal olefin metathesis catalysts has expanded the scope of the reaction to many new applications and has allowed for detailed study of the catalytic species.

The metathesis of terminal olefins of different steric bulk, different geometry as well as electronically different para-substituted styrenes was studied with the ruthenium based metathesis initiators, trans-(PCy3)2Cl2Ru=CHR, of different carbene substituents. Increasing olefin bulk was found to slow the rate of reaction and trans internal olefins were found to be slower to react than cis internal olefins. The kinetic product of a11 reactions was found to be the alkylidene, rather than the methylidene, suggesting the intermediacy of a 2,4-metallacycle. The observed effects were used to explain the mechanism of ring opening cross metathesis and acyclic diene metathesis polymerization. No linear electronic effects were observed.

In studying the different carbene ligands, a series of ester-carbene complexes was synthesized. These complexes were found to be highly active for the metathesis of olefinic substrates, including acrylates and trisubstituted olefins. In addition, the estercarbene moiety is thermodynamically high in energy. As a result, these complexes react to ring-open cyclohexene by metathesis to alleviate the thermodynamic strain of the ester-carbene ligand. However, ester-carbene complexes were found to be thermolytically unstable in solution.

Thermolytic decomposition pathways were studied for several ruthenium-carbene based olefin metathesis catalysts. Substituted carbenes were found to decompose through bimolecular pathways while the unsubstituted carbene (the methylidene) was found to decompose unimolecularly. The stability of several derivatives of the bis-phosphine ruthenium based catalysts was studied for its implications to ring-closing metathesis. The reasons for the activity and stability of the different ruthenium-based catalysts is discussed.

The difference in catalyst activity and initiation is discussed for the bis-phosphine based and mixed N-heterocyclic carbene/phosphine based ruthenium olefin metathesis catalysts. The mixed ligand catalysts initiate far slower than the bis-phosphine catalysts but are far more metathesis active. A scheme is proposed to explain the difference in reactivity between the two types of catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a facile strategy to tether lanthanide complexes to organic-inorganic hybrid titania materials via sol-gel processing by employing chemically modified titanium alkoxide as the precursor where the organic ligand sensitizing the luminescence of lanthanide ions is bonded to titanium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of lutetium alkyl, amino, and guanidinato complexes based upon an amino-phosphine ligand framework had been prepared. These complexes were applied to initiate ring-opening polymerization of 2,2'-dimethyltrimethylene carbonate (DTC). The type of the initiator significantly influenced the catalytic activity of these complexes in a trend as follows: alkyl approximate to guanidinate > amide, whereas the complexes with flexible backbone between P and N atoms within the ligand exhibited higher activity than those with rigid backbone. The isolated PDTC had bimodal-mode molecular weight distribution. The molecular weights of each fraction increased linearly with the conversion, indicating that there might be two active species. This had been confirmed by analyses of oligomeric DTC living species and oligomer with NMR technique as the metal-alkoxide and the four-membered metallocyclic lactate. Kinetic investigation displayed that the polymerization rate was the first order with the monomer concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les essais préliminaires pour préparer des alcoolates de fer à partir du bichlorure ou bibromure de fer (II), en les combinant avec des ligands de type diimino pyridine, ont engendré la formation de complexes homoleptiques et hétéroleptiques, dépendant des substituants sur les branches imines du ligand. Ces complexes homoleptiques octaédriques et paramagnétiques ont été étudiés par rapport à leurs propriétés spectroscopiques et cristallographiques. De plus, la synthèse des complexes de fer hétéroleptique a engendré de bons précurseurs penta-coordonnés pour les réactions de substitution de ligands avec des alcoolates de métaux alcalins, de manière à produire les dialcoolates de fer (II) désirés. Des techniques d’analyse telles que la spectroscopie UV-vis, l’analyse élémentaire, la spectrométrie de masse à haute résolution et la cristallographie aux rayons X ont été utilisées pour caractériser ces complexes de fer. L’activité catalytique de ces complexes de fer (II) a aussi été étudiée par rapport à la polymérisation du lactide; les dialcoolates convoités ont été générés in-situ en raison de la difficulté à produire et à isoler les dérivés alcoolates des complexes diimino pyridine de fer. Une étude approfondie a aussi été faite sur les réactions de polymérisation, surtout par rapport aux valeurs de conversion à l’échelle du temps, ainsi qu’à la tacticité des chaines de polymères obtenues. Ces analyses ont été effectuées par l’entremise de la spectroscopie de résonance magnétique nucléaire, de la chromatographie d’exclusion stérique, et de la spectrométrie de masse MALDI (désorption-ionisation laser assistée par matrice).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anionic surface-initiated polymerization of ethylene oxide and styrene has been performed using multiwalled carbon nanotubes (MWNTs) functionalized with anionic initiators. The surface of MWNTs was modified via covalent attachment of precursor anions such as 4-hydroxyethyl benzocyclobutene (BCBEO) and 1-benzocyclobutene-1′-phenylethylene (BCB-PE) through Diels-Alder cycloaddition at 235 °C. Surface-functionalized MWNTs-g-(BCB-EO) n and MWNTs-g-(BCB-PE) n with 23 and 54 wt % precursor initiators, respectively, were used for the polymerizations. Alkoxide anion on the surface of MWNTs-g-(BCB-EO) n was generated through reaction with potassium triphenylmethane for the polymerization of ethylene oxide in tetrahydrofuran and phenyl substituted alkyllithium was generated from the surface of MWNTs-g-(BCB-PE) n using sec-butyllithium for the polymerization of styrene in benzene. In both cases, the initiation was found to be very slow because of the heterogeneous reaction medium. However, the MWNTs gradually dispersed in the reaction medium during the polymerization. A pale green color was noticed in the case of ethylene oxide polymerization and the color of initiator as well as the propagating anions was not discernible visually in styrene polymerization. Polymer grafted nanocomposites, MWNTs-g-(BCB-PEO) n and MWNTs-g-(BCB-PS) n containing a very high percentage of hairy polymer with a small fraction of MWNTs (<1 wt %) were obtained. The conversion of ethylene oxide and the weight percent of PEO on the surface of the MWNTs increased with increasing reaction time indicating a controlled polymerization. The polymer-grafted MWNTs were characterized using FTIR, 1H NMR, Raman spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and transmission electron microscopy (TEM). Size exclusion chromatography of the polymer grafted MWNTs revealed broad molecular weight distributions (1.3 < Mw/Mn < 1.8) indicating the presence of different sizes of polymer nanocomposites. The TEM images showed the presence of thick layers of polymer up to 30 nm around the MWNTs. The living nature of the growing polystyryllithium was used to produce diblock copolymer grafts using sequential polymerization of isoprene on the surface of MWNTs.