929 resultados para ALKALINE LIPASE
Resumo:
Considering the potential of marine environment present study was designed for the screening and isolation of a potential salt tolerant. alkaline and thennotolerant lipase producing bacteria from the costal belts of South India and consequent development of ideal bioprocess for industrial production, purification characterisation and evaluation of the potential of the lipase enzyme for various industrial applications 1. Screening and isolation of a potential lipase producing bacteria. 2. Optimization of various physicochemical factors in Submerged fennentation for the production of alkaline lipase 3. Purification ofthe lipase enzyme 4. Characterisation of the enzyme 5. Evaluation of the enzyme for various industrial applications
Resumo:
Bacillus smithii BTMS 11, isolated from marine sediment, produced alkaline and thermostable lipase. The enzyme was purified to homogeneity by ammonium sulfate precipitation and ion exchange chromatography which resulted in 0.51 % final yield and a 4.33 fold of purification. The purified enzyme was found to have a specific activity of 360 IU/mg protein. SDS-PAGE analyses, under non-reducing and reducing conditions, yielded a single band of 45 kDa indicating the single polypeptide nature of the enzyme and zymogram analysis using methylumbelliferyl butyrate as substrate confirmed the lipolytic activity of the protein band. The enzyme was found to have 50 C and pH 8.0 as optimum conditions for maximal activity. However, the enzyme was active over wide range of temperatures (30–80 C) and pH (7.0–10.0). Effect of a number of metal salts, solvents, surfactants, and other typical enzyme inhibitors on lipase activity was studied to determine the novel characteristics of the enzyme. More than 90 % of the enzyme activity was observed even after 3 h of incubation in the presence of commercial detergents Surf, Sunlight, Ariel, Henko, Tide and Ujala indicating the detergent compatibility of B. smithii lipase. The enzyme was also found to be efficient in stain removal from cotton cloths. Further it was observed that the enzyme could catalyse ester synthesis between fatty acids of varying carbon chain lengths and methanol with high preference for medium to long chain fatty acids showing 70 % of esterification. Results of the study indicated scope for application of this marine bacterial lipase in various industries
Resumo:
Current studies about lipase production involve the use of agro-industrial residues and newly isolated microorganisms aimed at increasing economic attractiveness of the process. Based on these aspects, the main objective of this work is to perform the partial characterization of enzymatic extracts produced by a newly isolated Penicillium crustosum in solid-state fermentation. Lipase extract presented optimal temperature and pH of 37 A degrees C and 9-10, respectively. The concentrated enzymatic extract showed more stability at 25 A degrees C and pH 7. The enzymes kept 100% of their enzymatic activity until 60 days of storage at 4 and -10 A degrees C. The stability under calcium salts indicated that the hydrolytic activity presented decay with the increase of calcium concentration. The specificity under several substrates indicated good enzyme activities in triglycerides from C4 to C18.
Resumo:
The soluble lipase from Pseudomonas fluorescens (PFL) forms bimolecular aggregates in which the hydrophobic active centers of the enzyme monomers are in close contact. This bimolecular aggregate could be immobilized by multipoint covalent linkages on glyoxyl supports at pH 8.5. The monomer of PFL obtained by incubation of the soluble enzyme in the presence of detergent (0.5% TRITON X-100) could not be immobilized under these conditions. The bimolecular aggregate has two amino terminal residues in the same plane. A further incubation of the immobilized derivative under more alkaline conditions (e.g., pH 10.5) allows a further multipoint attachment of lysine (Lys) residues located in the same plane as the amino terminal residues. Monomeric PFL was immobilized at pH 10.5 in the presence of 0.5% TRITON X-100. The properties of both PFL derivatives were compared. In general, the bimolecular derivatives were more active, more selective and more stable both in water and in organic solvents than the monomolecular ones. The bimolecular derivative showed twice the activity and a much higher selectivity (100 versus 20) for the hydrolysis of R,S-2-hydroxy-4-phenylbutyric acid ethyl ester (HPBEt) in aqueous media at pH 5.0 compared to the monomeric derivative. In experiments measuring thermal inactivation at 75 °C, the bimolecular derivative was 5-fold more stable than the monomeric derivative (and 50-fold more stable than a one-point covalently immobilized PFL derivative), and it had a half-life greater than 4 h. In organic solvents (cyclohexane and tert-amyl alcohol), the bimolecular derivative was much more stable and more active than the monomeric derivative in catalyzing the transesterification of olive oil with benzyl alcohol. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Pós-graduação em Microbiologia - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A protein extract containing a plant lipase from oleaginous seeds of Pachira aquatica was tested using soybean oil, wastewater from a poultry processing plant, and beef fat particles as substrate. The hydrolysis experiments were carried out at a temperature of 40°C, an incubation time of 90 minutes, and pH 8.0-9.0. The enzyme had the best stability at pH 9.0 and showed good stability in the alkaline range. It was found that P. aquatica lipase was stable in the presence of some commercial laundry detergent formulations, and it retained full activity up to 0.35% in hydrogen peroxide, despite losing activity at higher concentrations. Concerning wastewater, the lipase increased free fatty acids release by 7.4 times and promoted the hydrolysis of approximately 10% of the fats, suggesting that it could be included in a pretreatment stage, especially for vegetable oil degradation.
Resumo:
A mathematical model for the galvanostatic discharge and recovery of porous, electrolytic manganese dioxide cathodes, similar to those found within primary alkaline batteries is presented. The phenomena associated with discharge are modeled over three distinct size scales, a cathodic (or macroscopic) scale, a porous manganese oxide particle (or microscopic) scale, and a manganese oxide crystal (or submicroscopic) scale. The physical and chemical coupling between these size scales is included in the model. In addition, the model explicitly accounts for the graphite phase within the cathode. The effects that manganese oxide particle size and proton diffusion have on cathodic discharge and the effects of intraparticle voids and microporous electrode structure are predicted using the model.
Resumo:
A systematic study of four parameters within the alkaline hydrothermal treatment of three commercial titania powders—anatase, rutile, and Degussa P25—was made. These powders were treated with 5, 7.5, 9, and 10 M NaOH between 100 and 220 °C for 20 h. The effects of alkaline concentration, hydrothermal temperature, and precursor phase and crystallite size on the resultant nanostructure formation have been studied through X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and nitrogen adsorption. Through the correlation of these data, morphological phase diagrams were constructed for each commercial powder. Interpretation of the resultant morphological phase diagrams indicates that alkaline concentration and hydrothermal temperature affect nanostructure formation independently, where nanoribbon formation is significantly influenced by temperature for initial formation. The phase and crystallite size of the precursor also significantly influenced nanostructure formation, with rutile displaying a slower rate of precursor consumption compared with anatase. Small crystallite titania precursors formed nanostructures at reduced hydrothermal temperatures.
Resumo:
A novel model for the potentiostatic discharge of primary alkaline battery cathodes is presented. The model is used to simulate discharges resulting from the stepped potential electrochemical spectroscopy (SPECS) of primary alkaline battery cathodes cathodes, and the results are validated with experimental data. We show that a model based on a single (or mean) reaction framework can be used to simulate multi-reaction discharge behaviour and we develop a consistent functional modification to the kinetic equation of the model that allows for this to occur. The model is used to investigate the effects that the initial exchange current density, i00, and the diffusion coefficient for protons in electrolytic manganese dioxide (EMD), DH+, have on SPECS discharge. The behaviour observed is consistent with the idea that individual reduction reactions, within the multi-reaction, reduction behaviour of EMD, have distinct i00 and DH+ values.
Resumo:
Since its initial proposal in 1998, alkaline hydrothermal processing has rapidly become an established technology for the production of titanate nanostructures. This simple, highly reproducible process has gained a strong research following since its conception. However, complete understanding and elucidation of nanostructure phase and formation have not yet been achieved. Without fully understanding phase, formation, and other important competing effects of the synthesis parameters on the final structure, the maximum potential of these nanostructures cannot be obtained. Therefore this study examined the influence of synthesis parameters on the formation of titanate nanostructures produced by alkaline hydrothermal treatment. The parameters included alkaline concentration, hydrothermal temperature, the precursor material‘s crystallite size and also the phase of the titanium dioxide precursor (TiO2, or titania). The nanostructure‘s phase and morphology was analysed using X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy. X-ray photoelectron spectroscopy (XPS), dynamic light scattering (non-invasive backscattering), nitrogen sorption, and Rietveld analysis were used to determine phase, for particle sizing, surface area determinations, and establishing phase concentrations, respectively. This project rigorously examined the effect of alkaline concentration and hydrothermal temperature on three commercially sourced and two self-prepared TiO2 powders. These precursors consisted of both pure- or mixed-phase anatase and rutile polymorphs, and were selected to cover a range of phase concentrations and crystallite sizes. Typically, these precursors were treated with 5–10 M sodium hydroxide (NaOH) solutions at temperatures between 100–220 °C. Both nanotube and nanoribbon morphologies could be produced depending on the combination of these hydrothermal conditions. Both titania and titanate phases are comprised of TiO6 units which are assembled in different combinations. The arrangement of these atoms affects the binding energy between the Ti–O bonds. Raman spectroscopy and XPS were therefore employed in a preliminary study of phase determination for these materials. The change in binding energy from a titania to a titanate binding energy was investigated in this study, and the transformation of titania precursor into nanotubes and titanate nanoribbons was directly observed by these methods. Evaluation of the Raman and XPS results indicated a strengthening in the binding energies of both the Ti (2p3/2) and O (1s) bands which correlated to an increase in strength and decrease in resolution of the characteristic nanotube doublet observed between 320 and 220 cm.1 in the Raman spectra of these products. The effect of phase and crystallite size on nanotube formation was examined over a series of temperatures (100.200 �‹C in 20 �‹C increments) at a set alkaline concentration (7.5 M NaOH). These parameters were investigated by employing both pure- and mixed- phase precursors of anatase and rutile. This study indicated that both the crystallite size and phase affect nanotube formation, with rutile requiring a greater driving force (essentially �\harsher. hydrothermal conditions) than anatase to form nanotubes, where larger crystallites forms of the precursor also appeared to impede nanotube formation slightly. These parameters were further examined in later studies. The influence of alkaline concentration and hydrothermal temperature were systematically examined for the transformation of Degussa P25 into nanotubes and nanoribbons, and exact conditions for nanostructure synthesis were determined. Correlation of these data sets resulted in the construction of a morphological phase diagram, which is an effective reference for nanostructure formation. This morphological phase diagram effectively provides a .recipe book�e for the formation of titanate nanostructures. Morphological phase diagrams were also constructed for larger, near phase-pure anatase and rutile precursors, to further investigate the influence of hydrothermal reaction parameters on the formation of titanate nanotubes and nanoribbons. The effects of alkaline concentration, hydrothermal temperature, crystallite phase and size are observed when the three morphological phase diagrams are compared. Through the analysis of these results it was determined that alkaline concentration and hydrothermal temperature affect nanotube and nanoribbon formation independently through a complex relationship, where nanotubes are primarily affected by temperature, whilst nanoribbons are strongly influenced by alkaline concentration. Crystallite size and phase also affected the nanostructure formation. Smaller precursor crystallites formed nanostructures at reduced hydrothermal temperature, and rutile displayed a slower rate of precursor consumption compared to anatase, with incomplete conversion observed for most hydrothermal conditions. The incomplete conversion of rutile into nanotubes was examined in detail in the final study. This study selectively examined the kinetics of precursor dissolution in order to understand why rutile incompletely converted. This was achieved by selecting a single hydrothermal condition (9 M NaOH, 160 °C) where nanotubes are known to form from both anatase and rutile, where the synthesis was quenched after 2, 4, 8, 16 and 32 hours. The influence of precursor phase on nanostructure formation was explicitly determined to be due to different dissolution kinetics; where anatase exhibited zero-order dissolution and rutile second-order. This difference in kinetic order cannot be simply explained by the variation in crystallite size, as the inherent surface areas of the two precursors were determined to have first-order relationships with time. Therefore, the crystallite size (and inherent surface area) does not affect the overall kinetic order of dissolution; rather, it determines the rate of reaction. Finally, nanostructure formation was found to be controlled by the availability of dissolved titanium (Ti4+) species in solution, which is mediated by the dissolution kinetics of the precursor.
Resumo:
Hydrotalcites have been synthesised using three different pH solutions to assess the effect of pH on the uptake of arsenate and vanadate. The ability of these hydrotalcites to remove vanadate and arsenate from solution has been determined by ICP-OES. Raman spectroscopy is used to monitor changes in the anionic species for hydrotalcites synthesised at different pH values. The results show a reduction in the concentration of arsenate and vanadate anions that are removed in extremely alkaline solutions. Hydrotalcites containing arsenate and vanadate are stable in solutions up to pH 10. Exposure of these hydrotalcites to higher pH values results in the removal of large percentages of arsenate and vanadate from the hydrotalcite interlayer.