939 resultados para ALKALI-HALIDE CRYSTALS
Resumo:
The assembly and testing of apparatus for the measurement of elastic and photoelastic constants by Brillouin scattering, using a Fabry-Perot interferometer and with argon ion laser excitation is described. Such measurements are performed on NaCI, KBr and LiF using the A = 488.0 nm laser line. The elastic constants obtained here are in very good agreement with the ultrasonic data for all three materials. The discrepancy between ultrasonic and hypersonic sound velocities which was reported by some authors for KBr and LiF is not confirmed, and the elastic constants obtained for LiF are the most accurate to date. Also, the present photoelastic constants are in good agreement with the data obtained by ultrasonic techniques for all three crystals. The results for the KBr and LiF crystals constitute the first set of photoelastic constants obtained for these materials by Brillouin spectroscopy. Our results for LiF are the best available to date.
Resumo:
The present work reports the study of KCl thin films doped with In+ or Tl+. Both systems show optical absorption bands similar to single crystals. As the impurity concentration increases, so does the absorption as also the half band width, unlike in KCl: Cu+ films. Further experimental techniques such as X-ray diffraction, scanning electron micrographs and energy dispersive X-ray observations were used and comparative analysis with KCl : Cu+ films reveals new conditions for better crystallinity of the samples.
Resumo:
Pós-graduação em Química - IQ
Resumo:
ჩატარებულ იქნა ექსპერიმენტები, მუდმივი ელექტრული ველის გავლენის შესასწავლად ელექტრომაგნიტური გამოსხივების (ემგ) სპექტრალურ მახასიათებლებზე, NaCl-ის კრისტალებისათვის.
Resumo:
Mineral surfaces were important during the emergence of life on Earth because the assembly of the necessary complex biomolecules by random collisions in dilute aqueous solutions is implausible. Most silicate mineral surfaces are hydrophilic and organophobic and unsuitable for catalytic reactions, but some silica-rich surfaces of partly dealuminated feldspars and zeolites are organophilic and potentially catalytic. Weathered alkali feldspar crystals from granitic rocks at Shap, north west England, contain abundant tubular etch pits, typically 0.4–0.6 μm wide, forming an orthogonal honeycomb network in a surface zone 50 μm thick, with 2–3 × 106 intersections per mm2 of crystal surface. Surviving metamorphic rocks demonstrate that granites and acidic surface water were present on the Earth’s surface by ∼3.8 Ga. By analogy with Shap granite, honeycombed feldspar has considerable potential as a natural catalytic surface for the start of biochemical evolution. Biomolecules should have become available by catalysis of amino acids, etc. The honeycomb would have provided access to various mineral inclusions in the feldspar, particularly apatite and oxides, which contain phosphorus and transition metals necessary for energetic life. The organized environment would have protected complex molecules from dispersion into dilute solutions, from hydrolysis, and from UV radiation. Sub-micrometer tubes in the honeycomb might have acted as rudimentary cell walls for proto-organisms, which ultimately evolved a lipid lid giving further shelter from the hostile outside environment. A lid would finally have become a complete cell wall permitting detachment and flotation in primordial “soup.” Etch features on weathered alkali feldspar from Shap match the shape of overlying soil bacteria.
Resumo:
We study the molecular mechanisms of alkali halide ion interactions with the single-wall carbon nanotube surface in water by means of fully atomistic molecular dynamics simulations. We focus on the basic physical-chemical principles of ion–nanotube interactions in aqueous solutions and discuss them in light of recent experimental findings on selective ion effects on carbon nanotubes.
Resumo:
The influence of uniaxial stress upon three types of imperfections occurring in the alkali halide crystal lattice has been investigated. The imperfections are the interstitial atom, the interstitial ion, and the negative ion vacancy. The interstitial atom, or H center, is a paraelastic defect which assumes a preferential crystal orientation in the field of an external mechanical stress. From the results of the reorientation kinetics - studies, it was possible to show that H centers are not stable in the KBr crystal lattice above 2SoK. At temperatures higher than 2SoK, the H centers are transformed into two new paraelastic defects, H(ii) and H(iii), possessing the same optical absorption band as the H center but differing both from the H' center and from each other in their reorientation kinetics. A study of the wavelength dependence of the H, H(ii), and VI (Na+) centers s~owed the 'existence of three similar-polarized transitions for each of these defects. One of these transitions, located at 230 run for all of the defects studied, was determined to be too high in energy to be explained by the simple X2 - level scheme. In addition, a comparison of various properties of the four defects indicates that the last three can be described as perturbed H centers. Dichroism measurements, performed as a function of temperature and wavelengt, h on the 230-nm I band in KBr, showed this band to be a composite of a band at 234 nm due to the I center and a band at 230 nm attributed to the H center. The I center dichroism was isolated and was observed under various experimental conditions. The results of these observations are consistent with a body-centered model for the I center in which the I-center absorption band is attributed to the excitation of a p-like electron on the interstitial Br- ion. Similar measurements were also perfonned on the a band in KI. The a-band dichroism measurements were found to be consistent with an electronic transition from an s-like ground state to a p-like excited state, indicating that the a center is best described as a quasi-molecule.
Resumo:
The objective of this thesis was to demonstrate the potential of fast atom bombardment mass spectrometry (FABMS) as a probe of condensed phase systems and its possible uses for the study of hydrogen bonding. FABMS was used to study three different systems. The first study was aimed at investigating the selectivity of the ligand tris(3,6-dioxaheptyl) amine (tdoha) for the alkali metal cations. FABMS results correlated well with infrared and nmr data. Systems where a crown ether competed with tdoha for a given alkali metal cation were also investigated by fast atom bombardment. The results were found to correlate with the cation affinity of tdoha and the ability of the crown ether to bind the cation. In the second and third studies, H-bonded systems were investigated. The imidazole-electron donor complexes were investigated and FABMS results showed the expected H-bond strength of the respective complexes. The effects of concentration, liquid matrix, water content, deuterium exchange, and pre-ionization of the complex were also investigated. In the third system investigated, the abundance of the diphenyl sulfone-ammonium salt complexes (presumably H-bonded) in the FABMS spectrum were found to correlate with qualitative considerations such as steric hindrance and strength of ion pairs.
Resumo:
The reactions of the low-temperature polymorph of copper(I) cyanide (LT-CuCN) with concentrated aqueous alkali-metal halide solutions have been investigated. At room temperature, KX (X = Br and I) and CsX (X = Cl, Br, and I) produce the addition products K[Cu-2(CN)(2)Br](H2O)-H-. (I), K-3[Cu-6(CN)(6)I-3](.)2H(2)O (II), Cs[Cu-3(CN)(3)Cl] (III), Cs[Cu-3(CN)(3)Br] (IV), and Cs-2[Cu-4(CN)(4)I-2](H2O)-H-. (V), with 3-D frameworks in which the -(CuCN)- chains present in CuCN persist. No reaction occurs, however, with NaX (X = Cl, Br, I) or KCl. The addition compounds, I-V, reconvert to CuCN when washed. Both low- and high-temperature polymorphs of CuCN (LT- and HT-CuCN) are produced, except in the case of Cs[Cu-3(CN)(3)Cl] (III), which converts only to LT-CuCN. Heating similar AX-CuCN reaction mixtures under hydrothermal conditions at 453 K for 1 day produces single crystals of I-V suitable for structure determination. Under these more forcing conditions, reactions also occur with NaX (X = Cl, Br, I) and KCl. NaBr and KCl cause some conversion of LT-CuCN into HT-CuCN, while NaCl and NaI, respectively, react to form the mixed-valence Cu(I)/Cu(II) compounds [Cu-II(OH2)(4)][Cu-4(I)(CN)(6)], a known phase, and [Cu-II(OH2)(4)][Cu-4(I)(CN)(4)I-2] (VI), a 3-D framework, which contains infinite -(CuCN)- chains. After 3 days of heating under hydrothermal conditions, the reaction between KI and CuCN produces [Cu-II(OH2)(4)][Cu-2(I)(CN)I-2](2) (VII), in which the CuCN chains are broken into single Cu-CN-Cu units, which in turn are linked into chains via iodine atoms and then into layers via long Cu-C and Cu-Cu interactions.
Resumo:
The observation of light metal ions in nucleic acids crystals is generally a fortuitous event. Sodium ions in particular are notoriously difficult to detect because their X-ray scattering contributions are virtually identical to those of water and Na+…O distances are only slightly shorter than strong hydrogen bonds between well-ordered water molecules. We demonstrate here that replacement of Na+ by K+, Rb+ or Cs+ and precise measurements of anomalous differences in intensities provide a particularly sensitive method for detecting alkali metal ion-binding sites in nucleic acid crystals. Not only can alkali metal ions be readily located in such structures, but the presence of Rb+ or Cs+ also allows structure determination by the single wavelength anomalous diffraction technique. Besides allowing identification of high occupancy binding sites, the combination of high resolution and anomalous diffraction data established here can also pinpoint binding sites that feature only partial occupancy. Conversely, high resolution of the data alone does not necessarily allow differentiation between water and partially ordered metal ions, as demonstrated with the crystal structure of a DNA duplex determined to a resolution of 0.6 Å.
Resumo:
Bifunctional Pt-HMOR catalysts were prepared by incipient wetness impregnation of various desilicated MOR obtained by alkaline treatment using NaOH concentrations ranging from 0.1 to 0.5 M. The zeolite structural changes upon modification were investigated by several techniques including powder X-ray diffraction,Al-27 and Si-29 MAS-NMR spectroscopy, N-2 adsorption, pyridine adsorption followed by infrared spectroscopy and the catalytic model reaction of m-xylene transformation. For low alkaline concentration the zeolite acidity is preserved, along with a slight increase of the volume correspondent to the larger micropores due to the removal of extra-framework debris already existent at the parent zeolite. At higher NaOH concentrations there is a significant loss of crystalinity and acidity as well as the formation of mesoporosity. The characterization of the metal function shows similar patterns for Pt-HMOR and Pt-M/0.1 samples, with Pt particles located mainly inside the inner porosity. In contrast, large Pt particles become visible at the intercrystalline mesoporosity of MOR crystals developed during the desilication treatments at severe alkaline conditions. The catalytic results obtained for n-hexane hydroisomerization showed an improved selectivity for dibranched over monobranched isomers for Pt-M/0.1 sample, likely due to the preservation of the support acidity and the slight enlargement of the micropores. This work is a new example in which the mesoporous development does not improve the catalytic efficiency of the zeolites, whereas mild alkaline desilication might be considered as an effective solution to produce customized catalysts with enhanced performance for a given application. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Self- and cross-velocity correlation functions and related transport coefficients of molten salts are studied by molecular-dynamics simulation. Six representative systems are considered, i.e., NaCl and KCl alkali halides, CuCl and CuBr noble-metal halides, and SrCl2 and ZnCl2 divalent metal-ion halides. Computer simulation results are compared with experimental self-diffusion coefficients and electrical conductivities. Special attention is paid to dynamic cross correlations and their dependence on the Coulomb interactions as well as on the size and mass differences between anions and cations.
Resumo:
We have presented a Green's function method for the calculation of the atomic mean square displacement (MSD) for an anharmonic Hamil toni an . This method effectively sums a whole class of anharmonic contributions to MSD in the perturbation expansion in the high temperature limit. Using this formalism we have calculated the MSD for a nearest neighbour fcc Lennard Jones solid. The results show an improvement over the lowest order perturbation theory results, the difference with Monte Carlo calculations at temperatures close to melting is reduced from 11% to 3%. We also calculated the MSD for the Alkali metals Nat K/ Cs where a sixth neighbour interaction potential derived from the pseudopotential theory was employed in the calculations. The MSD by this method increases by 2.5% to 3.5% over the respective perturbation theory results. The MSD was calculated for Aluminum where different pseudopotential functions and a phenomenological Morse potential were used. The results show that the pseudopotentials provide better agreement with experimental data than the Morse potential. An excellent agreement with experiment over the whole temperature range is achieved with the Harrison modified point-ion pseudopotential with Hubbard-Sham screening function. We have calculated the thermodynamic properties of solid Kr by minimizing the total energy consisting of static and vibrational components, employing different schemes: The quasiharmonic theory (QH), ).2 and).4 perturbation theory, all terms up to 0 ().4) of the improved self consistent phonon theory (ISC), the ring diagrams up to o ().4) (RING), the iteration scheme (ITER) derived from the Greens's function method and a scheme consisting of ITER plus the remaining contributions of 0 ().4) which are not included in ITER which we call E(FULL). We have calculated the lattice constant, the volume expansion, the isothermal and adiabatic bulk modulus, the specific heat at constant volume and at constant pressure, and the Gruneisen parameter from two different potential functions: Lennard-Jones and Aziz. The Aziz potential gives generally a better agreement with experimental data than the LJ potential for the QH, ).2, ).4 and E(FULL) schemes. When only a partial sum of the).4 diagrams is used in the calculations (e.g. RING and ISC) the LJ results are in better agreement with experiment. The iteration scheme brings a definitive improvement over the).2 PT for both potentials.
Resumo:
Self- and cross-velocity correlation functions and related transport coefficients of molten salts are studied by molecular-dynamics simulation. Six representative systems are considered, i.e., NaCl and KCl alkali halides, CuCl and CuBr noble-metal halides, and SrCl2 and ZnCl2 divalent metal-ion halides. Computer simulation results are compared with experimental self-diffusion coefficients and electrical conductivities. Special attention is paid to dynamic cross correlations and their dependence on the Coulomb interactions as well as on the size and mass differences between anions and cations.