942 resultados para AIRWAY SURFACE LIQUID


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies in cystic fibrosis patients and mice overexpressing the epithelial Na(+) channel beta-subunit (betaENaC-Tg) suggest that raised airway Na(+) transport and airway surface liquid (ASL) depletion are central to the pathogenesis of cystic fibrosis lung disease. However, patients or mice with Liddle gain-of-function betaENaC mutations exhibit hypertension but no lung disease. To investigate this apparent paradox, we compared the airway phenotype (nasal versus tracheal) of Liddle with CFTR-null, betaENaC-Tg, and double mutant mice. In mouse nasal epithelium, the region that functionally mimics human airways, high levels of CFTR expression inhibited Liddle epithelial Nat channel (ENaC) hyperfunction. Conversely, in mouse trachea, low levels of CFTR failed to suppress Liddle ENaC hyperfunction. Indeed, Na(+) transport measured in Ussing chambers ("flooded" conditions) was raised in both Liddle and betaENaC-Tg mice. Because enhanced Na(+) transport did not correlate with lung disease in these mutant mice, measurements in tracheal cultures under physiologic "thin film" conditions and in vivo were performed. Regulation of ASL volume and ENaC-mediated Na(+) absorption were intact in Liddle but defective in betaENaC-Tg mice. We conclude that the capacity to regulate Na(+) transport and ASL volume, not absolute Na(+) transport rates in Ussing chambers, is the key physiologic function protecting airways from dehydration-induced lung disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La Fibrose Kystique (FK) est une maladie dégénérative qui entraine une dégénération des poumons dû au problème de clairance mucociliaire (CMC). Le volume de surface liquide (SL) couvrant les cellules pulmonaires est essentiel à la clairance de mucus et au combat contre les infections. Les nucléotides extracellulaires jouent un rôle important dans la CMC des voies aériennes, en modifiant le volume de la SL pulmonaire. Cependant, les mécanismes du relâchement de l’ATP et de leurs déplacements à travers la SL, restent inconnus. Des études ultérieures démontrent que l’exocytose d’ATP mécano-sensible et Ca2+-dépendant, dans les cellules A549, est amplifié par les actions synergétiques autocrine/paracrine des cellules avoisinantes. Nous avions comme but de confirmer la présence de la boucle purinergique dans plusieurs modèles de cellules épithéliales et de développer un système nous permettant d’observer directement la SL. Nous avons démontrés que la boucle purinergique est fonctionnelle dans les modèles de cellules épithéliales examinés, mis appart les cellules Calu-3. L’utilisation de modulateur de la signalisation purinergique nous a permis d’observer que le relâchement d’ATP ainsi que l’augmentation du [Ca2+]i suivant un stress hypotonique, sont modulés par le biais de cette boucle purinergique et des récepteurs P2Y. De plus, nous avons développé un système de microscopie qui permet d’observer les changements de volume de SL en temps réel. Notre système permet de contrôler la température et l’humidité de l’environnement où se trouvent les cellules, reproduisant l’environnement pulmonaire humain. Nous avons démontré que notre système peut identifier même les petits changements de volume de SL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The epithelial sodium channel (ENaC) is responsible for Na(+) and fluid absorption across colon, kidney, and airway epithelia. Short palate lung and nasal epithelial clone 1 (SPLUNC1) is a secreted, innate defense protein and an autocrine inhibitor of ENaC that is highly expressed in airway epithelia. While SPLUNC1 has a bactericidal permeability-increasing protein (BPI)-type structure, its NH2-terminal region lacks structure. Here we found that an 18 amino acid peptide, S18, which corresponded to residues G22-A39 of the SPLUNC1 NH2 terminus inhibited ENaC activity to a similar degree as full-length SPLUNC1 (∼2.5 fold), while SPLUNC1 protein lacking this region was without effect. S18 did not inhibit the structurally related acid-sensing ion channels, indicating specificity for ENaC. However, S18 preferentially bound to the βENaC subunit in a glycosylation-dependent manner. ENaC hyperactivity is contributory to cystic fibrosis (CF) lung disease. Unlike control, CF human bronchial epithelial cultures (HBECs) where airway surface liquid (ASL) height was abnormally low (4.2 ± 0.6 μm), addition of S18 prevented ENaC-led ASL hyperabsorption and maintained CF ASL height at 7.9 ± 0.6 μm, even in the presence of neutrophil elastase, which is comparable to heights seen in normal HBECs. Our data also indicate that the ENaC inhibitory domain of SPLUNC1 may be cleaved away from the main molecule by neutrophil elastase, suggesting that it may still be active during inflammation or neutrophilia. Furthermore, the robust inhibition of ENaC by the S18 peptide suggests that this peptide may be suitable for treating CF lung disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several cystic fibrosis (CF) mouse models demonstrate an increased susceptibility to Pseudomonas aeruginosa lung infection, characterized by excessive inflammation and high rates of mortality. Here we developed a model of chronic P. aeruginosa lung disease in mice homozygous for the murine CF transmembrane conductance regulator G551D mutation that provides an excellent model for CF lung disease. After 3 days of infection with mucoid P. aeruginosa entrapped in agar beads, the G551D animals lost substantially more body weight than non-CF control animals and were less able to control the infection, harboring over 40-fold more bacteria in the lung. The airways of infected G551D animals contained altered concentrations of the inflammatory mediators tumor necrosis factor-alpha, KC/N51, and macrophage inflammatory protein-2 during the first 2 days of infection, suggesting that an ineffective inflammatory response is partly responsible for the clearance defect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies on frog skin acini have challenged the question whether Cl- secretion or Na+ absorption in the airways is driven by luminal K+ channels in series to a basolateral K+ conductance. We examined the possible role of luminal K+ channels in electrolyte transport in mouse trachea in Ussing-chamber experiments. Tracheas of both normal and CFTR (-/-) mice showed a dominant amiloride-sensitive Na+ absorption under both, control conditions and after cAMP-dependent stimulation. The lumen-negative transepithelial voltage was enhanced after application of IBMX and forskolin and Cl- secretion was activated. Electrolyte secretion induced by IBMX and forskolin was inhibited by luminal glibenclamide and the blocker of basolateral Na(+)2Cl(-)K(+) cotransporter azosemide. Similarly, the compound 29313, a blocker of basolateral KCNQ1/KCNE3 K+ channels effectively blocked Cl- secretion when applied to either the luminal or basolateral side of the epithelium. RT-PCR analysis suggested expression of additional K+ channels in tracheal epithelial cells such as Slo1 and Kir6.2. However, we did not detect any functional evidence for expression of luminal K+ channels in mouse airways, using luminal 29313, clotrimazole and Ba2+ or different K+ channel toxins such as charybdotoxin, apamin and alpha-dendrotoxin. Thus, the present study demonstrates Cl- secretion in mouse airways, which depends on basolateral Na(+)2Cl(-)K(+) cotransport and luminal CFTR and non-CFTR Cl- channels. Cl- secretion is maintained by the activity of basolateral K+ channels, while no clear evidence was found for the presence of a luminal K+ conductance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The epithelial sodium channel (ENaC) is responsible for Na+ and fluid absorption across colon, kidney, and airway epithelia. We have previously identified SPLUNC1 as an autocrine inhibitor of ENaC. We have now located the ENaC inhibitory domain of SPLUNC1 to SPLUNC1's N terminus, and a peptide corresponding to this domain, G22-A39, inhibited ENaC activity to a similar degree as full-length SPLUNC1 (∼2.5 fold). However, G22-A39 had no effect on the structurally related acid-sensing ion channels, indicating specificity for ENaC. G22-A39 preferentially bound to the β-ENaC subunit in a glycosylation-dependent manner. ENaC hyperactivity is contributory to cystic fibrosis (CF) lung disease. Addition of G22-A39 to CF human bronchial epithelial cultures (HBECs) resulted in an increase in airway surface liquid height from 4.2±0.6 to 7.9±0.6 μm, comparable to heights seen in normal HBECs, even in the presence of neutrophil elastase. Our data also indicate that the ENaC inhibitory domain of SPLUNC1 may be cleaved away from the main molecule by neutrophil elastase, which suggests that it may still be active during inflammation or neutrophilia. Furthermore, the robust inhibition of ENaC by the G22-A39 peptide suggests that this peptide may be suitable for treating CF lung disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The epithelial Na(+) channel (ENaC) and the acid-sensing ion channels (ASICs) form subfamilies within the ENaC/degenerin family of Na(+) channels. ENaC mediates transepithelial Na(+) transport, thereby contributing to Na(+) homeostasis and the maintenance of blood pressure and the airway surface liquid level. ASICs are H(+)-activated channels found in central and peripheral neurons, where their activation induces neuronal depolarization. ASICs are involved in pain sensation, the expression of fear, and neurodegeneration after ischemia, making them potentially interesting drug targets. This review summarizes the biophysical properties, cellular functions, and physiologic and pathologic roles of the ASIC and ENaC subfamilies. The analysis of the homologies between ENaC and ASICs and the relation between functional and structural information shows many parallels between these channels, suggesting that some mechanisms that control channel activity are shared between ASICs and ENaC. The available crystal structures and the discovery of animal toxins acting on ASICs provide a unique opportunity to address the molecular mechanisms of ENaC and ASIC function to identify novel strategies for the modulation of these channels by pharmacologic ligands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The epithelial sodium channel ENaC is physiologically important in the kidney for the regulation of the extracellular fluid volume, and in the lungs for the maintenance of the appropriate airway surface liquid volume that lines the pulmonary epithelium. Besides the regulation of ENaC by hormones, intracellular factors such as Na(+) ions, pH, or Ca(2+) are responsible for fast adaptive responses of ENaC activity to changes in the intracellular milieu. In this study, we show that ENaC is rapidly and reversibly inhibited by internal sulfhydryl-reactive molecules such as methanethiosulfonate derivatives of different sizes, the metal cations Cd(2+) and Zn(2+), or copper(II) phenanthroline, a mild oxidizing agent that promotes the formation of disulfide bonds. At the single channel level, these agents applied intracellularly induce the appearance of long channel closures, suggesting an effect on ENaC gating. The intracellular reducing agent dithiothreitol fully reverses the rundown of ENaC activity in inside-out patches. Our observations suggest that changes in intracellular redox potential modulate ENaC activity and may regulate ENaC-mediated Na(+) transport in epithelia. Finally, substitution experiments reveal that multiple cysteine residues in the amino and carboxyl termini of ENaC subunits are responsible for this thiol-mediated inhibition of ENaC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La pathologie de la fibrose kystique (FK) est causée par des mutations du gène codant pour le canal Cl- CFTR. Au niveau respiratoire, cette dysfonction du transport transépithélial de Cl- occasionne une altération de la composition et du volume du liquide de surface des voies aériennes. Une accumulation de mucus déshydraté favorise alors la colonisation bactérienne et une réponse inflammatoire chronique, entraînant des lésions épithéliales sévères au niveau des voies aériennes et des alvéoles pouvant culminer en défaillance respiratoire. Le principal objectif de mon projet de maîtrise était d’étudier les processus de réparation de l’épithélium alvéolaire sain, l’épithélium bronchique sain et FK à l’aide d’un modèle in vitro de plaies mécaniques. Nos résultats démontrent la présence d’une boucle autocrine EGF/EGFR contrôlant les processus de migration cellulaire et de réparation des lésions mécaniques. D’autre part, nos expériences montrent que l’EGF stimule l’activité et l’expression des canaux K+ KATP, KvLQT1 et KCa3.1 des cellules épithéliales respiratoires. L’activation de ces canaux est cruciale pour les processus de réparation puisque la majeure partie de la réparation stimulée à l’EGF est abolie en présence d’inhibiteurs de ces canaux. Nous avons également observé que les cellules FK présentent un délai de réparation, probablement causé par un défaut de la réponse EGF/EGFR et une activité/expression réduite des canaux K+. Nos résultats permettent de mieux comprendre les mécanismes de régulation des processus de réparation de l’épithélium sain et FK. De plus, ils ouvrent de nouvelles options thérapeutiques visant à promouvoir, à l’aide d’activateurs de canaux K+ et de facteurs de croissance, la régénération de l’épithélium respiratoire chez les patients atteints de FK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the biology the PLUNC (recently renamed BPI fold, BPIF) family of secreted proteins is poorly understood, multiple array based studies have suggested that some are differentially expressed in lung diseases. We have examined the expression of BPIFB1 (LPLUNC1), the prototypic two-domain containing family member, in lungs from CF patients and in mouse models of CF lung disease. BPIFB1 was localized in CF lung samples along with BPIFA1, MUC5AC, CD68 and NE and directly compared to histologically normal lung tissues and that of bacterial pneumonia. We generated novel antibodies to mouse BPIF proteins to conduct similar studies on ENaC transgenic (ENaC-Tg) mice, a model for CF-like lung disease. Small airways in CF demonstrated marked epithelial staining of BPIFB1 in goblet cells but staining was absent from alveolar regions. BPIFA1 and BPIFB1 were not co-localised in the diseased lungs. In ENaC-Tg mice there was strong staining of both proteins in the airways and luminal contents. This was most marked for BPIFB1 and was noted within 2 weeks of birth. The two proteins were present in distinct cells within epithelium. BPIFB1 was readily detected in BAL from ENaC-Tg mice but was absent from wild-type mice. Alterations in the expression of BPIF proteins is associated with CF lung disease in humans and mice. It is unclear if this elevation of protein production, which results from phenotypic alteration of the cells within the diseased epithelium, plays a role in the pathogenesis of the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluid and macromolecule secretion by submucosal glands in mammalian airways is believed to be important in normal airway physiology and in the pathophysiology of cystic fibrosis (CF). An in situ fluorescence method was applied to measure the ionic composition and viscosity of freshly secreted fluid from airway glands. Fragments of human large airways obtained at the time of lung transplantation were mounted in a humidified perfusion chamber and the mucosal surface was covered by a thin layer of oil. Individual droplets of secreted fluid were microinjected with fluorescent indicators for measurement of [Na+], [Cl−], and pH by ratio imaging fluorescence microscopy and viscosity by fluorescence recovery after photobleaching. After carbachol stimulation, 0.1–0.5 μl of fluid accumulated in spherical droplets at gland orifices in ≈3–5 min. In gland fluid from normal human airways, [Na+] was 94 ± 8 mM, [Cl−] was 92 ± 12 mM, and pH was 6.97 ± 0.06 (SE, n = 7 humans, more than five glands studied per sample). Apparent fluid viscosity was 2.7 ± 0.3-fold greater than that of saline. Neither [Na+] nor pH differed in gland fluid from CF airways, but viscosity was significantly elevated by ≈2-fold compared to normal airways. These results represent the first direct measurements of ionic composition and viscosity in uncontaminated human gland secretions and indicate similar [Na+], [Cl−], and pH to that in the airway surface liquid. The elevated gland fluid viscosity in CF may be an important factor promoting bacterial colonization and airway disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protease-activated receptors (PARs) are widely distributed in human airways. They couple to G-proteins and are activated after proteolytic cleavage of the N terminus of the receptor. Evidence is growing that PAR subtype 2 plays a pivotal role in inflammatory airway diseases, such as allergic asthma or bronchitis. However, nothing is known about the effects of PAR-2 on electrolyte transport in the native airways. PAR-2 is expressed in airway epithelial cells, where they are activated by mast cell tryptase, neutrophil proteinase 3, or trypsin. Recent studies produced conflicting results about the functional consequence of PAR-2 stimulation. Here we report that stimulation of PAR-2 receptors in mouse and human airways leads to a change in electrolyte transport and a shift from absorption to secretion. Although PAR-2 appears to be expressed on both sides of the epithelium, only basolateral stimulation results in inhibition of amiloride sensitive Na+ conductance and stimulation of both luminal Cl- channels and basolateral K+ channels. The present data indicate that these changes occur through activation of phospholipase C and increase in intracellular Ca2+, which activates basolateral SK4 K+ channels and luminal Ca2+-dependent Cl- channels. In addition, the present data suggest a PAR-2 mediated release of prostaglandin E2, which may contribute to the secretory response. In conclusion, these results provide further evidence for a role of PAR-2 in inflammatory airway disease: stimulation of these receptors may cause accumulation of airway surface liquid, which, however, may help to flush noxious stimuli away from the affected airways. ©2005 FASEB

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Furosemide, a potent diuretic, affects ion and water movement across the respiratory epithelium. However, the effects of furosemide, as clinically used, on mucociliary clearance, a critical respiratory defense mechanism, are still lacking in humans. Fourteen young healthy subjects were assigned to three random interventions, spaced one-week apart: no intervention (control), oral furosemide (40 mg), and furosemide + oral volume replacement (F + R). Nasal mucociliary clearance was assessed by saccharine test (STT), and mucus properties were in vitro evaluated by means of contact angle and transportability by sneeze. Urine output and osmolality were also evaluated. Urine output increased and reduced urine osmolality in furosemide and F + R compared to the control condition. STT remained stable in the control group. In contrast, STT increased significantly (40%) after furosemide and F + R. There were no changes in vitro mucus properties in all groups. In conclusion, furosemide prolongs STT in healthy young subjects. This effect is not prevented by fluid replacement, suggesting a direct effect of furosemide on the respiratory epithelium. (C) 2010 Elsevier B.V. All rights reserved.