995 resultados para AIRBORNE LASER ALTIMETRY
Resumo:
Flood extent maps derived from SAR images are a useful source of data for validating hydraulic models of river flood flow. The accuracy of such maps is reduced by a number of factors, including changes in returns from the water surface caused by different meteorological conditions and the presence of emergent vegetation. The paper describes how improved accuracy can be achieved by modifying an existing flood extent delineation algorithm to use airborne laser altimetry (LiDAR) as well as SAR data. The LiDAR data provide an additional constraint that waterline (land-water boundary) heights should vary smoothly along the flooded reach. The method was tested on a SAR image of a flood for which contemporaneous aerial photography existed, together with LiDAR data of the un-flooded reach. Waterline heights of the SAR flood extent conditioned on both SAR and LiDAR data matched the corresponding heights from the aerial photo waterline significantly more closely than those from the SAR flood extent conditioned only on SAR data.
Resumo:
Airborne laser altimetry has the potential to make frequent detailed observations that are important for many aspects of studying land surface processes. However, the uncertainties inherent in airborne laser altimetry data have rarely been well measured. Uncertainty is often specified as generally as 20cm in elevation, and 40cm planimetric. To better constrain these uncertainties, we present an analysis of several datasets acquired specifically to study the temporal consistency of laser altimetry data, and thus assess its operational value. The error budget has three main components, each with a time regime. For measurements acquired less than 50ms apart, elevations have a local standard deviation in height of 3.5cm, enabling the local measurement of surface roughness of the order of 5cm. Points acquired seconds apart acquire an additional random error due to Differential Geographic Positioning System (DGPS) fluctuation. Measurements made up to an hour apart show an elevation drift of 7cm over a half hour. Over months, this drift gives rise to a random elevation offset between swathes, with an average of 6.4cm. The RMS planimetric error in point location was derived as 37.4cm. We conclude by considering the consequences of these uncertainties on the principle application of laser altimetry in the UK, intertidal zone monitoring.
Resumo:
Flood modelling of urban areas is still at an early stage, partly because until recently topographic data of sufficiently high resolution and accuracy have been lacking in urban areas. However, Digital Surface Models (DSMs) generated from airborne scanning laser altimetry (LiDAR) having sub-metre spatial resolution have now become available, and these are able to represent the complexities of urban topography. The paper describes the development of a LiDAR post-processor for urban flood modelling based on the fusion of LiDAR and digital map data. The map data are used in conjunction with LiDAR data to identify different object types in urban areas, though pattern recognition techniques are also employed. Post-processing produces a Digital Terrain Model (DTM) for use as model bathymetry, and also a friction parameter map for use in estimating spatially-distributed friction coefficients. In vegetated areas, friction is estimated from LiDAR-derived vegetation height, and (unlike most vegetation removal software) the method copes with short vegetation less than ~1m high, which may occupy a substantial fraction of even an urban floodplain. The DTM and friction parameter map may also be used to help to generate an unstructured mesh of a vegetated urban floodplain for use by a 2D finite element model. The mesh is decomposed to reflect floodplain features having different frictional properties to their surroundings, including urban features such as buildings and roads as well as taller vegetation features such as trees and hedges. This allows a more accurate estimation of local friction. The method produces a substantial node density due to the small dimensions of many urban features.
Resumo:
The study of the morphodynamics of tidal channel networks is important because of their role in tidal propagation and the evolution of salt-marshes and tidal flats. Channel dimensions range from tens of metres wide and metres deep near the low water mark to only 20-30cm wide and 20cm deep for the smallest channels on the marshes. The conventional method of measuring the networks is cumbersome, involving manual digitising of aerial photographs. This paper describes a semi-automatic knowledge-based network extraction method that is being implemented to work using airborne scanning laser altimetry (and later aerial photography). The channels exhibit a width variation of several orders of magnitude, making an approach based on multi-scale line detection difficult. The processing therefore uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels using a distance-with-destination transform. Breaks in the networks are repaired by extending channel ends in the direction of their ends to join with nearby channels, using domain knowledge that flow paths should proceed downhill and that any network fragment should be joined to a nearby fragment so as to connect eventually to the open sea.
Resumo:
Two ongoing projects at ESSC that involve the development of new techniques for extracting information from airborne LiDAR data and combining this information with environmental models will be discussed. The first project in conjunction with Bristol University is aiming to improve 2-D river flood flow models by using remote sensing to provide distributed data for model calibration and validation. Airborne LiDAR can provide such models with a dense and accurate floodplain topography together with vegetation heights for parameterisation of model friction. The vegetation height data can be used to specify a friction factor at each node of a model’s finite element mesh. A LiDAR range image segmenter has been developed which converts a LiDAR image into separate raster maps of surface topography and vegetation height for use in the model. Satellite and airborne SAR data have been used to measure flood extent remotely in order to validate the modelled flood extent. Methods have also been developed for improving the models by decomposing the model’s finite element mesh to reflect floodplain features such as hedges and trees having different frictional properties to their surroundings. Originally developed for rural floodplains, the segmenter is currently being extended to provide DEMs and friction parameter maps for urban floods, by fusing the LiDAR data with digital map data. The second project is concerned with the extraction of tidal channel networks from LiDAR. These networks are important features of the inter-tidal zone, and play a key role in tidal propagation and in the evolution of salt-marshes and tidal flats. The study of their morphology is currently an active area of research, and a number of theories related to networks have been developed which require validation using dense and extensive observations of network forms and cross-sections. The conventional method of measuring networks is cumbersome and subjective, involving manual digitisation of aerial photographs in conjunction with field measurement of channel depths and widths for selected parts of the network. A semi-automatic technique has been developed to extract networks from LiDAR data of the inter-tidal zone. A multi-level knowledge-based approach has been implemented, whereby low level algorithms first extract channel fragments based mainly on image properties then a high level processing stage improves the network using domain knowledge. The approach adopted at low level uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels. The higher level processing includes a channel repair mechanism.
Resumo:
In this study, a quality assessment method based on sampling of primary laser inventory units (microsegments) was analysed. The accuracy of a laser inventory carried out in Kuhmo was analysed as a case study. Field sample plots were measured on the sampled microsegments in the Kuhmo inventory area. Two main questions were considered. Did the ALS based inventory meet the accuracy requirements set for the provider and how should a reliable, cost-efficient and independent quality assessment be undertaken. The agreement between control measurement and ALS based inventory was analysed in four ways: 1) The root mean squared errors (RMSEs) and bias were calculated. 2) Scatter plots with 95% confidence intervals were plotted and the placing of identity lines was checked. 3) Bland-Altman plots were drawn so that the mean difference of attributes between the control method and ALS-method was calculated and plotted against average value of attributes. 4) The tolerance limits were defined and combined with Bland-Altman plots. The RMSE values were compared to a reference study from which the accuracy requirements had been set to the service provider. The accuracy requirements in Kuhmo were achieved, however comparison of RMSE values proved to be difficult. Field control measurements are costly and time-consuming, but they are considered to be robust. However, control measurements might include errors, which are difficult to take into account. Using the Bland-Altman plots none of the compared methods are considered to be completely exact, so this offers a fair way to interpret results of assessment. The tolerance limits to be set on order combined with Bland-Altman plots were suggested to be taken in practise. In addition, bias should be calculated for total area. Some other approaches for quality control were briefly examined. No method was found to fulfil all the required demands of statistical reliability, cost-efficiency, time efficiency, simplicity and speed of implementation. Some benefits and shortcomings of the studied methods were discussed.
Resumo:
This paper compares the applicability of three ground survey methods for modelling terrain: one man electronic tachymetry (TPS), real time kinematic GPS (GPS), and terrestrial laser scanning (TLS). Vertical accuracy of digital terrain models (DTMs) derived from GPS, TLS and airborne laser scanning (ALS) data is assessed. Point elevations acquired by the four methods represent two sections of a mountainous area in Cumbria, England. They were chosen so that the presence of non-terrain features is constrained to the smallest amount. The vertical accuracy of the DTMs was addressed by subtracting each DTM from TPS point elevations. The error was assessed using exploratory measures including statistics, histograms, and normal probability plots. The results showed that the internal measurement accuracy of TPS, GPS, and TLS was below a centimetre. TPS and GPS can be considered equally applicable alternatives for sampling the terrain in areas accessible on foot. The highest DTM vertical accuracy was achieved with GPS data, both on sloped terrain (RMSE 0.16. m) and flat terrain (RMSE 0.02. m). TLS surveying was the most efficient overall but veracity of terrain representation was subject to dense vegetation cover. Therefore, the DTM accuracy was the lowest for the sloped area with dense bracken (RMSE 0.52. m) although it was the second highest on the flat unobscured terrain (RMSE 0.07. m). ALS data represented the sloped terrain more realistically (RMSE 0.23. m) than the TLS. However, due to a systematic bias identified on the flat terrain the DTM accuracy was the lowest (RMSE 0.29. m) which was above the level stated by the data provider. Error distribution models were more closely approximated by normal distribution defined using median and normalized median absolute deviation which supports the use of the robust measures in DEM error modelling and its propagation. © 2012 Elsevier Ltd.