989 resultados para AIRBORNE FUNGI
Resumo:
Knowledge of anemophilous fungi in a given city or region is important for the ecological diagnosis and specific treatment of allergic manifestations induced by inhaled allergens. In order to diagnose the presence of anemophilous fungi, several qualitative and quantitative techniques are used depending on the study place. This study of fungal air spores was performed with a Rotorod Sampler®, an equipment which samples the air through a plastic rod attached to an electric engine that makes it spin fast enough to collect the particles in the air. The samples were collected once a week during 24 hours using the standard cycle of the manufacturers. A total of 52 samples were obtained from April 2000 through March 2001. The results revealed prevalence of ascosporos (50.49%), Cladosporium (17.86%), Aspergillus/Penicillium (15.03%), basidiosporos (3.84%), rusts (3.82%), and Helminthosporium (2.49%), and a lesser frequency of Botrytis (1.22%), Alternaria (1.19%), smuts (0.90%), Curvularia (0.87%), Nigrospora (0.61%), and Fusarium (0.08%). Also, 1.59% of the spores detected here could not be identified by the systematic key used. More fungal spores were observed during the summer than during the autumn.
Resumo:
Airbone fungi are considered important causes of allergic rhinitis and allergic asthma. The knowledge of these fungi in a city or region is important for the ecological diagnosis and specific treatment of allergic manifestations induced by inhalation of fungal allergens. The airborne fungi of Fortaleza, State of Ceará, Brazil, were studied during a one year period. Five hundred and twenty Petri dishes with Sabouraud dextrose agar medium were exposed at ten different locations in the city. The dishes exposed yielded one thousand and five hundred and twenty one colonies of twenty four genera. The most predominants were: Aspergillus (44.7%), Penicillium (13.3%), Curvularia (9.8%), Cladosporium (6.8%), Mycelia sterilia (6.0%), Fusarium (3.5%), Rhizopus (3.1%), Drechslera (2.6%), Alternaria (2.4%) and Absidia (2.2%). The results shown that Aspergillus, Penicillium, Mycelia sterilia, Fusarium and Alternaria were found during all months in the year. Absidia was more frequent during the dry season. Anemophilous fungi and the high concentration of spores in the air are important because may result in an increased number of people with allergic respiratory disease.
Resumo:
Introduction: This study aimed to identify airborne fungi in São Luis, Maranhão, Brazil, to determine the prevalent genera and to correlate these genera with the area and season. Methods: In total, 1,510 colony-forming units (CFUs) of airborne fungi were isolated from the north, south, east and west sides and from the center of the city from January to December 2007. The samples were collected on Petri dishes that were exposed to the fungi by the gravitational method. Results: Twenty genera of fungi were isolated; the most common were Aspergillus (33.5%), Penicillium (18.8%), Cladosporium (14.2%), Curvularia (10.6%) and Fusarium (7.6%). The CFUs of the fungi were statistically significant (p < 0.0001). Fungal biological diversity was present all year, without any large seasonal variations but with slight increases in May, August and September. Conclusions: The fungal genera identified in this study were correlated with natural systems and could be useful when evaluating the impact of environmental changes on the region.
Resumo:
Inhalation of fungal particles is a ubiquitous way of exposure to microorganisms during human life; however, this exposure may promote or exacerbate respiratory diseases only in particular exposure conditions and human genetic background. Depending on the fungal species and form, fungal particles can induce symptoms in the lung by acting as irritants, aeroallergens or pathogens causing infection. Some thermophilic species can even act in all these three ways (e.g. Aspergillus, Penicillium), mesophilic species being only involved in allergic and/or non-allergic airway diseases (e.g. Cladosporium, Alternaria, Fusarium). The goal of the present review is to present the current knowledge on the interaction between airborne fungal particles and the host immune system, to illustrate the differences of immune sensing of different fungal species and to emphasise the importance of conducting research on non-conventional mesophilic fungal species. Indeed, the diversity of fungal species we inhale and the complexity of their composition have a direct impact on fungal particle recognition and immune system decision to tolerate or respond to those particles, eventually leading to collateral damages promoting airway pathologies.
Resumo:
Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km(2) along an elevation gradient of 500 m by tag-encoded 454-pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, geographic and climatic parameters) and biotic (wheat cultivar, previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity whereas wheat cultivar, cropping history and the number of freezing days per year shaped the taxonomic beta diversity of these communities.
Resumo:
Many studies have attempted to evaluate the importance of airborne fungi in the development of invasive fungal infection, especially for immunocompromised hosts. Several kinds of instruments are available to quantitate fungal propagule levels in air. We compared the performance of the most frequently used air sampler, the Andersen sampler with six stages, with a portable one, the Reuter centrifugal sampler (RCS). A total of 84 samples were analyzed, 42 with each sampler. Twenty-eight different fungal genera were identified in samples analyzed with the Andersen instrument. In samples obtained with the RCS only seven different fungal genera were identified. The three most frequently isolated genera in samples analyzed with both devices were Penicillium, Aspergillus and Cladophialophora. In areas supplied with a high efficiency particulate air filter, fungal spore levels were usually lower when compared to areas without these filters. There was a significant correlation between total fungal propagule measurements taken with both devices on each sampling occasion (Pearson coefficient = 0.50). However, the Andersen device recovered a broader spectrum of fungi. We conclude that the RCS can be used for quantitative estimates of airborne microbiological concentrations. For qualitative studies, however, this device cannot be recommended.
Resumo:
The aim of this study was to estimate the indoor and outdoor concentrations of fungal spores in the Metropolitan Area of Sao Paulo (MASP), collected at different sites in winter/spring and summer seasons. The techniques adopted included cultivation (samples collected with impactors) and microscopic enumeration (samples collected with impingers). The overall results showed total concentrations of fungal spores as high as 36,000 per cubic meter, with a large proportion of non culturable spores (around 91 per cent of the total). Penicillium sp. and Aspergillus sp. were the dominant species both indoors and outdoors, in all seasons tested, occurring in more than 30 per cent of homes at very high concentrations of culturable airborne fungi [colony forming units(CFU) m−3]. There was no significant difference between indoor and outdoor concentrations. The total fungal spore concentration found in winter was 19 per cent higher than that in summer. Heat and humidity were the main factors affecting fungal growth; however, a non-linear response to these factors was found. Thus, temperatures below 16°C and above 25°C caused a reduction in the concentration (CFU m−3) of airborne fungi, which fits with MASP climatalogy. The same pattern was observed for humidity, although not as clearly as with temperature given the usual high relative humidity (above 70 per cent) in the study area. These results are relevant for public health interventions that aim to reduce respiratory morbidity among susceptible populations
Resumo:
Objective Exposure to bioaerosols in the occupational environment of sawmills could be associated with a wide range of health effects, in particular respiratory impairment, allergy and organic dust toxic syndrome. The objective of the study was to assess the frequency of medical respiratory and general symptoms and their relation to bioaerosol exposure. Method Twelve sawmills in the French part of Switzerland were investigated and the relationship between levels of bioaerosols (wood dust, airborne bacteria, airborne fungi and endotoxins), medical symptoms and impaired lung function was explored. A health questionnaire was distributed to 111 sawmill workers. Results The concentration of airborne fungi exceeded the limit recommended by the Swiss National Insurance (SUVA) in the twelve sawmills. This elevated fungi level significantly influenced the occurrence of bronchial syndrome (defined by cough and expectorations). No other health effects (irritations or respiratory effects) could be associated to the measured exposures. We observed that junior workers showed significantly more irritation syndrome (defined by itching/running nose, snoring and itching/red eyes) than senior workers. Lung function tests were not influenced by bioaerosol levels nor dust exposure levels. Conclusion Results suggest that occupational exposure to wood dust in a Swiss sawmill does not promote a clinically relevant decline in lung function. However, the occurrence of bronchial syndrome is strongly influenced by airborne fungi levels. [Authors]
Resumo:
Un problema de salud ambiental relevante es la contaminación del aire generado por diferentes factores, uno de ellos es la carga microbiana. El estudio evidencia la presencia de estos contaminantes del aire como son los bioaerosoles cultivables y contables en las áreas de los edificios administrativos estudiados la cual podría afectar la calidad del aire interior. Se realizó un estudio observacional de corte transversal que permitió conocer y establecer las características de la carga microbiana presente relacionada con bioaerosoles cultivables y contables en los sistemas de ventilación mecánica en tres edificios administrativos de la ciudad de Bogotá en el periodo 2012 a 2013 y, la asociación o no entre variables de interés. Los bioaerosoles cultivables y contables encontrados con mayores porcentajes en las muestras tomadas fueron comunes a los tres edificios así: Aspergillus sp. se encontró en el 77,2% (61) de las muestras para el edifico uno, mientras que para el dos fue de 91% (30) de las muestras y para el edificio tres 100% (19) de las muestras tomadas; seguido por el género Penicillium sp. del cual se encontró 60,8% (48) de las muestras para el edificio uno, para el edificio dos 87,9% (29) de las muestras y para el edificio tres 94,7% (18) de las muestras. Otro género encontrado en porcentajes altos en los tres edificios fue el Cladosporium sp. , en el edificio uno 41,8% (33) de las muestras, mientras que para el edificio dos correspondió al 100% (33) de las muestra y finalmente para el edificio tres 84,2% (16) de las muestras analizadas. Los hallazgos se correlacionan con lo reportado por la literatura.
Resumo:
The aim of this study was to estimate the indoor and outdoor concentrations of fungal spores in the Metropolitan Area of Sao Paulo (MASP), collected at different sites in winter/spring and summer seasons. The techniques adopted included cultivation (samples collected with impactors) and microscopic enumeration (samples collected with impingers). The overall results showed total concentrations of fungal spores as high as 36,000 per cubic meter, with a large proportion of non culturable spores (around 91% of the total). Penicillium sp. and Aspergillus sp. were the dominant species both indoors and outdoors, in all seasons tested, occurring in more than 30% of homes at very high concentrations of culturable airborne fungi [colony forming units(CFU) m(-3)]. There was no significant difference between indoor and outdoor concentrations. The total fungal spore concentration found in winter was 19% higher than that in summer. Heat and humidity were the main factors affecting fungal growth; however, a non-linear response to these factors was found. Thus, temperatures below 16A degrees C and above 25A degrees C caused a reduction in the concentration (CFU m(-3)) of airborne fungi, which fits with MASP climatalogy. The same pattern was observed for humidity, although not as clearly as with temperature given the usual high relative humidity (above 70%) in the study area. These results are relevant for public health interventions that aim to reduce respiratory morbidity among susceptible populations.
Resumo:
The growth of molds on paper containing cellulose is a frequent occurrence when the level of relative air humidity is high or when books become wet due to water leaks in libraries. The aim of this study is to differentiate the bioreceptivity of different types of book paper for different fungi. Laboratory tests were performed with strains of Aspergillus niger, Cladosporium sp., Chaetomium globosum and Trichoderma harzianum isolated from books. Four paper types were evaluated: couche Men (offset), recycled and a reference paper containing only cellulose. The tests were carried out in chambers with relative air humidity of 95% and 100%. Mold growth was greatest in the tests at 100% relative humidity. Results of stereoscopic microscopy observation showed that Cladosporium sp. grew in 74% of these samples, A. niger in 75%, T. harzianum in 72% and C. globosum in 60%. In the chambers with 95% air humidity Cladosporium sp. grew in only 9% of the samples, A. niger in 1%, T harzianum in 3% and C globosum did not grow in any sample. The most bioreceptive paper was couche and the least receptive was recycled paper. The composition of the recycled paper, however, varies depending on the types of waste materials used to make it. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Libraries are very propitious environments for the growth of fungi. The great concentration of organic material available for these microorganisms, and often with the lack of adequate ventilation or climate control, would favour this situation. This study was conducted in 2003 to determine the predominant genera of fungi in public libraries by a survey of fungi contaminating the upper surface of books, with and without air conditioning in the city of Sao Paulo, Brazil, in the winter and summer, during the respective periods with high and low levels of airborne fungi in that city. Six libraries were chosen, located on the campus of the University of Sao Paulo, three of them with air conditioning and the other three with natural ventilation. In these six libraries, 31 genera of fungi were identified in total. The genera and frequency of contaminant fungi recovered differed significantly between the libraries with and without air conditioning and in the samples collected in the summer as opposed to the winter. Cladosporium was the most frequent in the libraries with and without air conditioning, and in the winter. Aspergillus was isolated more often in the summer.
Resumo:
O conhecimento dos fungos anemófilos em determinada cidade ou região é importante para o diagnóstico etiológico e o tratamento específico das manifestações alérgicas respiratórias. Várias técnicas quantitativas e qualitativas são preconizadas para coleta e identificação desses fungos na dependência do local estudado. Nesta pesquisa, sobre esporos de fungos do ar, foi utilizado o equipamento Rotorod Sampler®, que retira a amostra do ar através de um bastão de plástico preso a um motor elétrico que o faz girar rapidamente, sendo as partículas suspensas no ar recolhidas pelo bastão. As amostras foram coletadas uma vez por semana, durante 24 horas, correspondendo a um ciclo de coleta. Foram realizadas 52 coletas entre abril de 2000 e março de 2001. Os resultados mostraram prevalência de ascosporos (50,49%), Cladosporium (17,86%), Aspergillus/Penicillium (15,03%), basidiosporos (3,84%), rusts (3,82%), Helminthosporium (2,49%), Botrytis (1,22%), Alternaria (1,19%), smuts (0,90%), Curvularia (0,87%), Nigrospora (0,61%) e Fusarium (0,08%). Não foi possível identificar 1,59% dos esporos de fungos coletados no período. O maior número de esporos foi observado nos meses de verão e o menor, durante o outono. Utilizando provas in vivo e in vitro, avaliou-se a hipersensibilidade a fungos entre 39 pacientes atópicos sofrendo de rinite e ou asma brônquica. Os testes cutâneos identificaram sensibilização em 17,94% dos pacientes, enquanto as provas sorológicas caracterizaram presença de IgE específica em 12,82% dos casos avaliados. A detecção de significativo número de esporos de fungos no ar de Porto Alegre, com muitas espécies comprovadamente alergênicas, e os índices de sensibilização observados em indivíduos atópicos confirmam a importância do estudo dos fungos anemófilos nessa cidade, com vistas a aprimorar o diagnóstico e o manejo de pacientes com manifestações alérgicas respiratórias.
Resumo:
OBJETIVO: Monitorar e caracterizar fungos anemófilos e leveduras de fontes bióticas e abióticas de uma unidade hospitalar. MÉTODOS: As coletas foram realizadas mensalmente e em dois períodos, do centro cirúrgico e unidades de terapia intensiva adulto e neonatal em hospital de Araraquara, Estado de São Paulo. Para coleta de fungos anemófilos foi utilizado amostrador tipo Andersen de simples estágio. A pesquisa de leveduras foi feita das mãos e de orofaringe de profissionais de saúde, bem como de superfícies de leitos e de maçanetas das áreas críticas. RESULTADOS: Foram recuperados do centro cirúrgico 32 gêneros de fungos anemófilos e 31 das unidades de terapia intensiva. Os gêneros mais freqüentemente isolados foram Cladophialophora spp., Fusarium spp., Penicillium spp., Chrysosporium spp. e Aspergillus spp. Durante o período de estudo, houve reforma e implantação de uma unidade dentro do hospital, que coincidiu com o aumento na contagem de colônias de Cladophialophora spp., Aspergillus spp. e Fusarium spp. Leveduras foram encontradas em 39,4% dos profissionais de saúde (16,7% das amostras dos espaços interdigitais, 12,1% do leito subungueal e 10,6% da orofaringe) e, em 44% das amostras do mobiliário, com predomínio do gênero Candida (C. albicans, C. guilliermondii, C. parapsilosis e C. lusitaniae) seguido por Trichosporon spp. CONCLUSÕES: Observou-se número relativamente elevado de fungos anemófilos (potencialmente patogênicos) em áreas especiais e níveis expressivos de leveduras em fontes bióticas e abióticas. O monitoramento microbiológico ambiental deve ser realizado, principalmente em salas especiais com pacientes imunocomprometidos, sujeitos à exposição de patógenos do meio ambiente, assim como, advindos de profissionais de saúde.