1000 resultados para AGROFORESTRY SYSTEMS
Resumo:
Leguminous plants used as green manure are an important nutrient source for coffee plantations, especially for soils with low nutrient levels. Field experiments were conducted in the Zona da Mata of Minas Gerais State, Brazil to evaluate the decomposition and nutrient release rates of four leguminous species used as green manures (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum and Stylosanthes guianensis) in a coffee agroforestry system under two different climate conditions. The initial N contents in plant residues varied from 25.7 to 37.0 g kg-1 and P from 2.4 to 3.0 g kg-1. The lignin/N, lignin/polyphenol and (lignin+polyphenol)/N ratios were low in all residues studied. Mass loss rates were highest in the first 15 days, when 25 % of the residues were decomposed. From 15 to 30 days, the decomposition rate decreased on both farms. On the farm in Pedra Dourada (PD), the decomposition constant k increased in the order C. mucunoides < S. aterrimum < S. guianensis < A. pintoi. On the farm in Araponga (ARA), there was no difference in the decomposition rate among leguminous plants. The N release rates varied from 0.0036 to 0.0096 d-1. Around 32 % of the total N content in the plant material was released in the first 15 days. In ARA, the N concentration in the S. aterrimum residues was always significantly higher than in the other residues. At the end of 360 days, the N released was 78 % in ARA and 89 % in PD of the initial content. Phosphorus was the most rapidly released nutrient (k values from 0.0165 to 0.0394 d-1). Residue decomposition and nutrient release did not correlate with initial residue chemistry and biochemistry, but differences in climatic conditions between the two study sites modified the decomposition rate constants.
Resumo:
In the semiarid region of Brazil, inadequate management of cropping systems and low plant biomass production can contribute to reduce soil carbon (C) and nitrogen (N) stocks; therefore, management systems that preserve C and N must be adopted. This study aimed to evaluate the changes in soil C and N stocks that were promoted by agroforestry (agrosilvopastoral and silvopastoral) and traditional agricultural systems (slash-and-burn clearing and cultivation for two and three years) and to compare these systems with the natural Caatinga vegetation after 13 years of cultivation. The experiment was carried out on a typical Ortic Chromic Luvisol in the municipality of Sobral, Ceará, Brazil. Soil samples were collected (layers 0-6, 6-12, 12-20, 20-40 and 40-60 cm) with four replications. The plain, convex and concave landforms in each study situation were analyzed, and the total organic C, total N and densities of the soil samples were assessed. The silvopastoral system promoted the greatest long-term reductions in C and N stocks, while the agrosilvopastoral system promoted the smallest losses and therefore represents a sustainable alternative for soil C and N sequestration in these semiarid conditions. The traditional agricultural system produced reductions of 58.87 and 9.57 Mg ha-1 in the organic C and total N stocks, respectively, which suggests that this system is inadequate for these semiarid conditions. The organic C stocks were largest in the concave landform in the agrosilvopastoral system and in the plain landform in the silvopastoral system, while the total N values were highest in the concave landform in the native, agrosilvopastoral and silvopastoral systems.
Resumo:
Intensive land use can lead to a loss of soil physical quality with negative impacts on soil aggregates, resistance to root penetration, porosity, and bulk density. Organic and agroforestry management systems can represent sustainable, well-balanced alternatives in the agroecosystem for promoting a greater input of organic matter than the conventional system. Based on the hypothesis that an increased input of organic matter improves soil physical quality, this study aimed to evaluate the impact of coffee production systems on soil physical properties in two Red-Yellow Oxisols (Latossolos Vermelho-Amarelos) in the region of Caparaó, Espirito Santo, Brazil. On Farm 1, we evaluated the following systems: primary forest (Pf1), organic coffee (Org1) and conventional coffee (Con1). On Farm 2, we evaluated: secondary forest (Sf2), organic coffee intercropped with inga (Org/In2), organic coffee intercropped with leucaena and inga (Org/In/Le2), organic coffee intercropped with cedar (Org/Ced2) and unshaded conventional coffee (Con2). Soil samples were collected under the tree canopy from the 0-10, 10-20 and 20-40 cm soil layers. Under organic and agroforestry coffee management, soil aggregation was higher than under conventional coffee. In the agroforestry system, the degree of soil flocculation was 24 % higher, soil moisture was 80 % higher, and soil resistance to penetration was lower than in soil under conventional coffee management. The macroaggregates in the organic systems, Org/In2, Org/In/Le2, and Org/Ced2 contained, on average, 29.1, 40.1 and 34.7 g kg-1 organic carbon, respectively. These levels are higher than those found in the unshaded conventional system (Con2), with 20.2 g kg-1.
Resumo:
The objective of this work was to estimate the amounts of N fixed by cowpea in a traditional system and by cowpea and gliricidia in an agroforestry system in the Brazilian Northeast semiarid. The experiment was carried out in a randomized complete block design, in a split-plot arrangement, with four replicates, in the semiarid region of the state of Paraíba, Brazil. Plots consisted of agroforestry and traditional systems (no trees), and split-plots of the three crops planted between the tree rows in the agroforestry system. To estimate N fixation, plant samples were collected in the fourth growth cycle of the perennial species and in the fourth planting cycle of the annual species. In the agroforestry system with buffel grass and prickly-pear cactus, gliricidia plants symbiotically fix high proportions of N (>50%) and contribute with higher N amounts (40 kg ha-1 in leaves) than in the traditional system (11 kg ha-1 in grain and 18 kg ha-1 in straw). In the agroforestry system with maize and cowpea, gliricidia plants do not fix nitrogen, and N input is limited to the fixation by cowpea (2.7 kg ha-1), which is lower than in the traditional system due to its lower biomass production.
Resumo:
Little is known about the traditional coffee cultivation systems in Central Aceh, Indonesia, where coffee production is a major source of income for local Gayo people. Based on field observations and farmer interviews, 14 representative agroforestry coffee plantations of different age classes (60-70 years, 30-40 years, and 20 years) as well as seven adjacent grassland and native forest sites were selected for this study, and soil and coffee leaf samples collected for nutrient analysis. Significant differences in soil and coffee leaf parameters were found between former native forest and Sumatran pine (Pinus merkusii) forest as previous land cover indicating the importance of the land use history for today’s coffee cultivation. Soil pH as well as exchangeable Na and Ca concentrations were significantly lower on coffee plantations compared to grassland and forest sites. Soil C, N, plant available P, exchangeable K, and Mg concentrations showed no consistent differences between land use groups. Nitrogen (N), phosphorus (P), and potassium (K) concentrations of coffee leaves were in the sufficiency range, whereas zinc (Zn) contents were found to be consistently below the sufficiency threshold and significantly lower in coffee plantations of previous pine forest cover compared to those of previous native forest cover. While the results of this study provided insights into the nutrient status of coffee plantations in Central Aceh, the heterogeneity of site conditions, limited sampling size, and scarcity of reliable data about the land use history and initial soil conditions of sampled sites preclude more definitive conclusions about the sustainability of the studied systems.
Resumo:
In recent times, increased emphasis has been placed on diversifying the types of trees to shade cacao (Theobroma cacao L.) and to achieve additional services. Agroforestry systems that include profitable and native timber trees are a viable alternative but it is necessary to understand the growth characteristics of these species under different environmental conditions. Thus, timber tree species selection should be based on plant responses to biotic and abiotic factors. The aims of this study were (1) to evaluate growth rates and leaf area indices of the four commercial timber species: Cordia thaisiana, Cedrela odorata, Swietenia macrophylla and Tabebuia rosea in conjunction with incidence of insect attacks and (2) to compare growth rates of four Venezuelan Criollo cacao cultivars planted under the shade of these four timber species during the first 36 months after establishment. Parameters monitored in timber trees were: survival rates, growth rates expressed as height and diameter at breast height and leaf area index. In the four Cacao cultivars: height and basal diameter. C. thaisiana and C. odorata had the fastest growth and the highest survival rates. Growth rates of timber trees will depend on their susceptibility to insect attacks as well as to total leaf area. All cacao cultivars showed higher growth rates under the shade of C. odorata. Growth rates of timber trees and cacao cultivars suggest that combinations of cacao and timber trees are a feasible agroforestry strategy in Venezuela.
Resumo:
Intensification processes in homegardens of the Nuba Mountains, Sudan, raise concerns about strongly positive carbon (C) and nutrient balances which are expected to lead to substantial element losses from these agroecosystems, in particular via soil gaseous emissions. Therefore, this thesis aimed at the quantification of C, nitrogen (N), phosphorus (P) and potassium (K) input and output fluxes with a special focus on soil gaseous losses, and the calculation of respective element balances. A further focus in this thesis was rainfall, a valuable resource for rain-fed agriculture in the Nuba Mountains. To minimize negative consequences of the high variability of rainfall, risk reducing mechanisms were developed by rain-fed farmers that may lose their efficacy in the course of climate change effects predicted for East Africa. Therefore, the second objective of this study was to examine possible changes in rainfall amounts during the last 60 years and to provide reliable risk and probability statements of rainfall-induced events of agricultural importance to rain-fed farmers in the Nuba Mountains. Soil gaseous emissions of C (in form of CO2) and N (in form of NH3 and N2O) of two traditional and two intensified homegardens were determined with a portable dynamic closed chamber system. For C gaseous emission rates reached their peak at the onset of the rainy season (2,325 g CO2-C ha-1 h-1 in an intensified garden type) and for N during the rainy season (16 g NH3-N ha-1 h-1 and 11.3 g N2O-N ha-1 h-1, in a traditional garden type). Data indicated cumulative annual emissions of 5,893 kg CO2-C ha-1, 37 kg NH3-N ha-1, and 16 kg N2O-N ha-1. For the assessment of the long-term productivity of the two types of homegardens and the identification of pathways of substantial element losses, a C and nutrient budget approach was used. In three traditional and three intensified homegardens observation plots were selected. The following variables were quantified on each plot between June and December in 2010: soil amendments, irrigation, biomass removal, symbiotic N2 fixation, C fixation by photosynthesis, atmospheric wet and dry deposition, leaching and soil gaseous emissions. Annual balances for C and nutrients amounted to -21 kg C ha-1, -70 kg N ha-1, 9 kg P ha-1 and -117 kg K ha-1 in intensified homegardens and to -1,722 kg C ha-1, -167 kg N ha-1, -9 kg P ha-1 and -74 kg K ha-1 in traditional homegardens. For the analysis of rainfall data, the INSTAT+ software allowed to aggregate long-term daily rainfall records from the Kadugli and Rashad weather stations into daily, monthly and annual intervals and to calculate rainfall-induced events of agricultural importance. Subsequently, these calculated values and events were checked for possible monotonic trends by Mann-Kendall tests. Over the period from 1970 to 2009, annual rainfall did not change significantly for either station. However, during this period an increase of low rainfall events coinciding with a decline in the number of medium daily rainfall events was observed in Rashad. Furthermore, the availability of daily rainfall data enabled frequency and conditional probability calculations that showed either no statistically significant changes or trends resulting only in minor changes of probabilities.
Resumo:
Deutsche Forschungsgemeinschaft
Resumo:
The purpose of this study was to test the hypothesis that soil water content would vary spatially with distance from a tree row and that the effect would differ according to tree species. A field study was conducted on a kaolinitic Oxisol in the sub-humid highlands of western Kenya to compare soil water distribution and dynamics in a maize monoculture with that under maize (Zea mays L.) intercropped with a 3-year-old tree row of Grevillea robusta A. Cunn. Ex R. Br. (grevillea) and hedgerow of Senna spectabilis DC. (senna). Soil water content was measured at weekly intervals during one cropping season using a neutron probe. Measurements were made from 20 cm to a depth of 225 cm at distances of 75, 150, 300 and 525 cm from the tree rows. The amount of water stored was greater under the sole maize crop than the agroforestry systems, especially the grevillea-maize system. Stored soil water in the grevillea-maize system increased with increasing distance from the tree row but in the senna-maize system, it decreased between 75 and 300 cm from the hedgerow. Soil water content increased least and more slowly early in the season in the grevillea-maize system, and drying was also evident as the frequency of rain declined. Soil water content at the end of the cropping season was similar to that at the start of the season in the grevillea-maize system, but about 50 and 80 mm greater in the senna-maize and sole maize systems, respectively. The seasonal water balance showed there was 140 mm, of drainage from the sole maize system. A similar amount was lost from the agroforestry systems (about 160 mm in the grevillea-maize system and 145 mm in the senna-maize system) through drainage or tree uptake. The possible benefits of reduced soil evaporation and crop transpiration close to a tree row were not evident in the grevillea-maize system, but appeared to greatly compensate for water uptake losses in the senna-maize system. Grevillea, managed as a tree row, reduced stored soil water to a greater extent than senna, managed as a hedgerow.
Resumo:
Monoculture farming systems have had serious environmental impacts such as loss of biodiversity and pollinator decline. The authors explain how temperate agroforestry systems show potential in being able to deliver multiple environmental benefits.
Resumo:
Transformation of the south-western Australian landscape from deep-rooted woody vegetation systems to shallow-rooted annual cropping systems has resulted in the severe loss of biodiversity and this loss has been exacerbated by rising ground waters that have mobilised stored salts causing extensive dry land salinity. Since the original plant communities were mostly perennial and deep rooted, the model for sustainable agriculture and landscape water management invariably includes deep rooted trees. Commercial forestry is however only economical in higher rainfall (>700 mm yr−1) areas whereas much of the area where biodiversity is threatened has lower rainfall (300–700 mm yr−1). Agroforestry may provide the opportunity to develop new agricultural landscapes that interlace ecosystem services such as carbon mitigation via carbon sequestration and biofuels, biodiversity restoration, watershed management while maintaining food production. Active markets are developing for some of these ecosystem services, however a lack of predictive metrics and the regulatory environment are impeding the adoption of several ecosystem services. Nonetheless, a clear opportunity exists for four major issues – the maintenance of food and fibre production, salinisation, biodiversity decline and climate change mitigation – to be managed at a meaningful scale and a new, sustainable agricultural landscape to be developed.
Resumo:
In order to evaluate growth characteristics, adaptability, biomass production, nutrient recycling, nutrient distribution and the ability to regenerate degraded land, a trial using four multipurpose tree species (Leucaena leucocephala, Leucaena diversifolia, Acacia melanoxylon and Mimosa scabrella) was undertaken over two years in a distrophic red yellow latosol (oxisol) following a randomized block experimental design with four replications. At the age of two years, A. melanoxylon and L. diversifolia were the tallest species (5.25 and 4.97 m, respectively) and A. melanoxylon and M. scabrella had the largest diameters at 20 cm from tree base. Mimosa scabrella and A. melanoxylon had the highest dry matter production and quantity of nutrients in the above ground biomass. In all species, the highest nutrient contents were found in the leaves, followed by branches and stems. From all species, the highest Nutrient Utilization Efficiency Indexes were obtained for sulphur, phosphorous, and magnesium; L. diversifolia was the most efficient for nitrogen, potassium, calcium, sulphur, and manganese, while A. melanoxylon was the most efficient for phosphorus, magnesium, boron, iron, and zinc. Litter production levels over a three month period were as follows: M. scabrella > A. melanoxylon > L. diversifolia > L. leucocephala. Litter nutrient content was higher in M. scabrella than in the other species.
Resumo:
2016
Resumo:
2008
Resumo:
Agroforestry systems with eucalyptus prevail in Central and Southeast Brazil, and little information is available about systems using native trees. The aim of the present study was to evaluate the development of seven native tree species grown under two agroforestry systems. The experiment was conducted starting in 2007 in 12-hectare area in the municipality of São Carlos, São Paulo state, Brazil. The tree species planted in the two systems (a silvopastoral system and an agrisilvicultural system) were: 'capixingui' (Croton floribundus) and 'mutambo' (Guazuma ulmifolia) (tutors), 'jequitibá-branco' (Cariniana estrellensis), 'canafistula' (Peltophorum dubium) and 'ipê felpudo' (Zeyheria tuberculosa) (timber trees), and 'angico-branco' (Anadenanthera colubrina) and 'pau-jacaré' (Piptadenia gonoacantha) (N-fixing trees). Data were collected for 48 months. The results show differences among tree development, which was evaluated as growth in height and diameter, as well as sensitivity to insect and disease damage. The overall results show that the agrisilvicultural system allowed better tree development. The species with best performance in the two systems were capixingui, mutambo and canafístula. Ipê-felpudo and jequitibá-branco showed the worst results. The high variability among individuals of the same species indicates the possibility of high production advances with selective breeding of these species.