987 resultados para AFFINITY IGE RECEPTOR
Resumo:
Mouse mast cells express gp49B1, a cell-surface member of the Ig superfamily encoded by the gp49B gene. We now report that by ALIGN comparison of the amino acid sequence of gp49B1 with numerous receptors of the Ig superfamily, a newly recognized family has been established that includes gp49B1, the human myeloid cell Fc receptor for IgA, the bovine myeloid cell Fc receptor for IgG2, and the human killer cell inhibitory receptors expressed on natural killer cells and T lymphocyte subsets. Furthermore, the cytoplasmic domain of gp49B1 contains two immunoreceptor tyrosine-based inhibition motifs that are also present in killer cell inhibitory receptors; these motifs downregulate natural killer cell and T-cell activation signals that lead to cytotoxic activity. As assessed by flow cytometry with transfectants that express either gp49B1 or gp49A, which are 89% identical in the amino acid sequences of their extracellular domains, mAb B23.1 was shown to recognize only gp49B1. Coligation of mAb B23.1 bound to gp49B1 and IgE fixed to the high-affinity Fc receptor for IgE on the surface of mouse bone marrow-derived mast cells inhibited exocytosis in a dose-related manner, as defined by the release of the secretory granule constituent beta-hexosaminidase, as well as the generation of the membrane-derived lipid mediator, leukotriene C4. Thus, gp49B1 is an immunoreceptor tyrosine-based inhibition motif-containing integral cell-surface protein that downregulates the high-affinity Fc receptor for IgE-mediated release of proinflammatory mediators from mast cells. Our findings establish a novel counterregulatory transmembrane pathway by which mast cell activation can be inhibited.
Resumo:
IgE antibodies bind the high-affinity IgE Fc receptor (FcεRI), found primarily on mast cells and basophils, and trigger inflammatory cascades of the allergic response. Inhibitors of IgE-FcεRI binding have been identified and an anti-IgE therapeutic antibody (omalizumab) is used to treat severe allergic asthma. However, preformed IgE-FcεRI complexes that prime cells before allergen exposure dissociate extremely slowly and cannot be disrupted by strictly competitive inhibitors. IgE-Fc conformational flexibility indicated that inhibition could be mediated by allosteric or other non-classical mechanisms. Here we demonstrate that an engineered protein inhibitor, DARPin E2_79 (refs 9, 10, 11), acts through a non-classical inhibition mechanism, not only blocking IgE-FcεRI interactions, but actively stimulating the dissociation of preformed ligand-receptor complexes. The structure of the E2_79-IgE-Fc(3-4) complex predicts the presence of two non-equivalent E2_79 sites in the asymmetric IgE-FcεRI complex, with site 1 distant from the receptor and site 2 exhibiting partial steric overlap. Although the structure is indicative of an allosteric inhibition mechanism, mutational studies and quantitative kinetic modelling indicate that E2_79 acts through a facilitated dissociation mechanism at site 2 alone. These results demonstrate that high-affinity IgE-FcεRI complexes can be actively dissociated to block the allergic response and suggest that protein-protein complexes may be more generally amenable to active disruption by macromolecular inhibitors.
Resumo:
The low-affinity IgE receptor FcϵRII (CD23) is part of the regulatory system controlling IgE synthesis in human B cells and exists in membrane and soluble forms. Binding of IgE to CD23 has been described to have stabilizing effects and to prevent cleavage of CD23. Previous experiments using anti-CD23 antibodies reduced IgE synthesis but were difficult to interpret as the antibody Fc part might also mediate feedback mechanisms. The purpose of this study was to investigate the regulatory role of CD23, by using designed ankyrin repeat proteins (DARPins) that specifically recognize CD23. Anti-CD23 DARPins were isolated by ribosome display and were produced as monovalent and bivalent constructs. Affinities to CD23 were measured by surface plasmon resonance. IgE synthesis and up-regulation of CD23 in human peripheral B cells were induced by IL-4 and anti-CD40 antibody. We assessed CD23 expression and its stabilization by FACS and used an ELISA for detecting soluble CD23. IgE synthesis was measured by ELISA and real-time PCR. Surface plasmon resonance revealed affinities of the DARPins to CD23 in the pico-molar range. Anti-CD23 DARPins strongly inhibited binding of IgE to CD23 and share thus a similar binding epitope as IgE. The DARPins stabilized membrane CD23 and reduced IgE synthesis in an isotype specific manner. Furthermore, the anti-CD23 DARPins decreased IgE transcript through inhibition of mature Cϵ RNA synthesis suggesting a posttranscriptional control mechanism. This study demonstrates that targeting CD23 alone is sufficient to inhibit IgE synthesis and suggests that a negative signaling occurs directly through the CD23 molecule.
Resumo:
1. In vivo studies have shown that the low-affinity 75 kDa neurotrophin receptor (p75NTR) is involved in axotomy-induced cell death of sensory and motor neurons. To further examine the importance of p75NTR in mediating neuronal death in vivo , we examined the effect of axotomy in the p75NTR-knockout mouse, which has a disrupted ligand-binding domain. 2. The extent of sensory and motor neuron loss in the p75NTR-knockout mouse following axotomy was not significantly different to that in wild-type mice. This suggests that disruption of the ligand-binding domain is insufficient to block the cell death process in axotomized neurons. 3. Immunohistochemical studies showed that axotomized neurons continue to express this mutant receptor with its intracellular death-signalling moiety intact. 4. Treatment with antisense oligonucleotides targeted against p75NTR resulted in significant reduction in the loss of axotomized neurons in the knockout mouse. 5. These data suggest that the intracellular domain of p75NTR is essential for death-signalling and that p75NTR can signal apoptosis, despite a disrupted ligand-binding domain.
Eosinophils in bronchial mucosa of asthmatics after allergen challenge: effect of anti-IgE treatment
Resumo:
Anti-IgE, omalizumab, inhibits the allergen response in patients with asthma. This has not been directly related to changes in inflammatory conditions. We hypothesized that anti-IgE exerts its effects by reducing airway inflammation. To that end, the effect of anti-IgE on allergen-induced inflammation in bronchial biopsies in 25 patients with asthma was investigated in a randomized, double-blind, placebo-controlled study. Allergen challenge followed by a bronchoscopy at 24 h was performed at baseline and after 12 weeks of treatment with anti-IgE or placebo. Provocative concentration that causes a 20% fall in forced expiratory volume in 1 s (PC(20)) methacholine and induced sputum was performed at baseline, 8 and 12 weeks of treatment. Changes in the early and late responses to allergen, PC(20), inflammatory cells in biopsies and sputum were assessed. Both the early and late asthmatic responses were suppressed to 15.3% and 4.7% following anti-IgE treatment as compared with placebo (P < 0.002). This was paralleled by a decrease in eosinophil counts in sputum (4-0.5%) and postallergen biopsies (15-2 cells/0.1 mm(2)) (P < 0.03). Furthermore, biopsy IgE+ cells were significantly reduced between both the groups, whereas high-affinity IgE receptor and CD4+ cells were decreased within the anti-IgE group. There were no significant differences for PC(20) methacholine. The response to inhaled allergen in asthma is diminished by anti-IgE, which in bronchial mucosa is paralleled by a reduction in eosinophils and a decline in IgE-bearing cells postallergen without changing PC(20) methacholine. This suggests that the benefits of anti-IgE in asthma may be explained by a decrease in eosinophilic inflammation and IgE-bearing cells.
Resumo:
The brain stems (13S) of streptozotocin (STZ)-diabetic rats were studied lo see the changes in neurotransmitter content and their receptor regulation. The norepinephrine (NE) content determined in the diabetic brain stems did ^ control. an E showed la while PI turnover hri content increased significantly compared N^r eNveFa o the recep significant increase. The alpha2 adrenergic receptor IneP utisoulinntreat d ratsetheNE contentt dec^ sled was significantly reduced during diabetes. in versedcto reanorm sed ulcrea e tK reatment the state. while EPI content remained increased as in die diabetic B,, for a]pha2 adrenergic receptors slw^nificantly while Unlabelled clonidine inhibited [31-I]NE binding in BS of control, diabetic and insulin treated ulations bindi diabetic rats showed that alpha2 adrenergicre^ punks cojnidiabetic animal the ligand bound sites with Hill slopes significantly away from unity. weaker to the low affinity site than in controls. Insulin treatment reversed[ this allumbmn to control levels. The displacement analysis using (-)-epinephrine age in control and diabetic animals revealed two populations of receptor affinidtyo=tat ss. In control animals, when GTP analogue added with epinephrine, the curve nagnlde caofnfitnroit yS model; but in the diabetic BS this effect `not aobserved. In bintact oth the diabetic data thus showlthat the effects of monovalent cations on affinity alphaz adrenergic receptors have a reduced affinity v due in stem ialtered Itscppeomson(5- regulation. The serotonin (5-HT) coat hydroxy) tryptophan (5-HTP) showed an increase and its breakdown metabolite (5-hydroxy) indoleacetic acid (5-I{IAA) showed a significant decrease. This showed that in serotonergic which l nerves there is a disturbance in both synthetic and breankduomwnbers pretma'med ana increased 5-HT. The high affinity serotonin receptor um ese serotonerg decrease in the receptor affinity. The insulin ^treatmentsturtiy showsha decreased serotonergic receptor kinetic parameters to control level. receptor function. These changes in adrenergic and serotonergic receptor function were suggested to be important in insulin function during STZ diabetes.
Resumo:
Understanding the molecular basis of the binding modes of natural and synthetic ligands to nuclear receptors is fundamental to our comprehension of the activation mechanism of this important class of hormone regulated transcription factors and to the development of new ligands. Thyroid hormone receptors (TR) are particularly important targets for pharmaceuticals development because TRs are associated with the regulation of metabolic rates, body weight, and circulating levels of cholesterol and triglycerides in humans. While several high-affinity ligands are known, structural information is only partially available. In this work we obtain structural models of several TR-ligand complexes with unknown structure by docking high affinity ligands to the receptors` ligand binding domain with subsequent relaxation by molecular dynamics simulations. The binding modes of these ligands are discussed providing novel insights into the development of TR ligands. The experimental binding free energies are reasonably well-reproduced from the proposed models using a simple linear interaction energy free-energy calculation scheme.
Resumo:
Aggregation of the high-affinity IgE receptor (FcεRI) with the low-affinity IgG receptor (FcγRIIb) on basophils or mast cells has been shown to inhibit allergen-induced cell degranulation. Molecules cross-linking these two receptors might therefore be of interest for the treatment of allergic disorders. Here, we demonstrate the generation of a novel bispecific fusion protein efficiently aggregating FcεRI-bound IgE with FcγRIIb on the surface of basophils to prevent pro-inflammatory mediator release.
Resumo:
Natural Abs represent the indigenous immune repertoire and are thus present at birth and persist throughout life. Previously, human autoantibodies to the alpha domain of the high-affinity IgE receptor (FcepsilonRIalpha) have been isolated from Ab libraries derived from normal donors and patients with chronic urticaria. To investigate whether these anti-FcepsilonRIalpha Abs are present in the germline repertoire, we constructed a phage Fab display library from human cord blood, which represents the naive immune repertoire before exposure to exogenous Ags. All isolated clones specific to the FcepsilonRIalpha had the same sequence. This single IgM Ab, named CBMalpha8, was strictly in germline configuration and had high affinity and functional in vitro anaphylactogenic activity. Inhibition experiments indicated an overlapping epitope on the FcepsilonRIalpha recognized by both CBMalpha8 and the previously isolated anti-FcepsilonRIalpha Abs from autoimmune and healthy donors. This common epitope on FcepsilonRIalpha coincides with the binding site for IgE. Affinity measurements demonstrated the presence of Abs showing CBMalpha8-like specificity, but with a significantly lower affinity in i.v. Ig, a therapeutic multidonor IgG preparation. We propose a hypothesis of escape mutants, whereby the resulting lower affinity IgG anti-FcepsilonRIalpha Abs are rendered less likely to compete with IgE for binding to FcepsilonRIalpha.
Resumo:
Signaling by interferon gamma (IFN-gamma) requires two structurally related cell surface proteins: a ligand-binding polypeptide, known as the IFN-gamma receptor (IFN-gamma R), and an accessory factor. However, it is not known whether IFN-gamma forms a ternary complex with the IFN-gamma R and accessory factor to initiate signaling. Here we demonstrate complex formation between IFN-gamma and the two proteins, both in solution and at the cell surface. We observe complexes containing ligand, two molecules of IFN-gamma R (designated the IFN-gamma R alpha chain), and one or two molecules of accessory factor (designated the IFN-gamma R beta chain). Transfected cells expressing both IFN-gamma R chains bind IFN-gamma with higher affinity than do cells expressing alpha chain alone. Anti-beta-chain antibodies prevent the beta chain from participating in the ligand-receptor complex, reduce the affinity for IFN-gamma, and block signaling. Soluble alpha- or beta-chain extracellular domains also inhibit function. These results demonstrate that IFN-gamma signals via a high-affinity multisubunit complex that contains two types of receptor chain and suggest a potential approach to inhibiting specific actions of IFN-gamma by blocking the association of receptor subunits.
Resumo:
The phenotype and antigenic specificity of cells secreting interleukin (IL) 4, IL-6, and interferon gamma was studied in mice during primary and secondary immune responses. T lymphocytes were the major source of interferon gamma, whereas non-B/non-T cells were the dominant source of IL-4 and IL-6 in the spleens of immunized animals. Cytokine-secreting non-B/non-T cells expressed surface receptors for IgE and/or IgG types II/III. Exposing these cells to antigen-specific IgE or IgG in vivo (or in vitro) "armed" them to release IL-4 and IL-6 upon subsequent antigenic challenge. These findings suggest that non-B/non-T cells may represent the "natural immunity" analogue of CD4+ T helper type 2 cells and participate in a positive feedback loop involved in the perpetuation of T helper type 2 cell responses.
Resumo:
Gangliosides are complex glycosphingolipids that are important in many biological processes. The present study investigated the role of gangliosides in the organization of lipid rafts in RBL-2H3 mast cells and in the modulation of mast cell degranulation via Fc epsilon RI. The role of gangliosides was examined using two ganglioside deficient cell lines (B6A4A2III-E5 and B6A4C1III-D1) as well as the parent cell line (RBL-2H3). All three cell lines examined express Fc epsilon RI, Lyn, Syk and LAT. However, only in RBL-2H3 cells were Fc epsilon RI, LAT and alpha-galactosyl derivatives of ganglioside GD(1b) mobilized to lipid raft domains following Fc epsilon RI stimulation. The inhibition of glycosphingolipid synthesis in RBL-2H3 cells also resulted in a decrease in the release of beta-hexosaminidase activity after Fc epsilon RI activation. The two mutant cell lines have a reduced release of beta-hexosaminidase activity after Fc epsilon RI stimulation, but not after exposure to calcium ionophore. These results indicate that the alpha-galactosyl derivatives of ganglioside GD(1b) are important in the initial events of Fc epsilon RI signaling upstream of Ca(2+) influx. Since the initial signaling events occur in lipid rafts and in the mutant cell lines the rafts are disorganized, these results also suggest that these gangliosides contribute to the correct assembly of lipid rafts and are essential for mast cell activation via Fc epsilon RI. (c) 2008 Published by Elsevier Inc.
Resumo:
The Syk tyrosine kinase family plays an essential role in immunoreceptor tyrosine-based activation motif (ITAM) signaling. The binding of Syk to tyrosine-phosphorylated ITAM subunits of immunoreceptors, such as Fc epsilon RI on mast cells, results in a conformational change, with an increase of enzymatic activity of Syk. This conformational change exposes the COOH-terminal tail of Syk, which has three conserved Tyr residues (Tyr-623, Tyr-624, and Tyr-625 of rat Syk). To understand the role of these residues in signaling, wild-type and mutant Syk with these three Tyr mutated to Phe was expressed in Syk-deficient mast cells. There was decreased Fc epsilon RI-induced degranulation, nuclear factor for T cell activation and NF kappa B activation with the mutated Syk together with reduced phosphorylation of MAP kinases p38 and p42/44 ERK. In non-stimulated cells, the mutated Syk was more tyrosine phosphorylated predominantly as a result of autophosphorylation. In vitro, there was reduced binding of mutated Syk to phosphorylated ITAM due to this increased phosphorylation. This mutated Syk from non-stimulated cells had significantly reduced kinase activity toward an exogenous substrate, whereas its autophosphorylation capacity was not affected. However, the kinase activity and the autophosphorylation capacity of this mutated Syk were dramatically decreased when the protein was dephosphorylated before the in vitro kinase reaction. Furthermore, mutation of these tyrosines in the COOH-terminal region of Syk transforms it to an enzyme, similar to its homolog ZAP-70, which depends on other tyrosine kinases for optimal activation. In testing Syk mutated singly at each one of the tyrosines, Tyr-624 but especially Tyr-625 had the major role in these reactions. Therefore, these results indicate that these tyrosines in the tail region play a critical role in regulating the kinase activity and function of Syk.
Resumo:
The role of the mast cell-specific gangliosides in the modulation of the endocytic pathway of Fc epsilon RI was investigated in RBL-2H3 cells and in the ganglioside-deficient cell lines, E5 and D1. MAb BC4, which binds to the alpha subunit of Fc epsilon RI, was used in the analysis of receptor internalization. After incubation with BC4-FITC for 30 min, endocytic vesicles in RBL-2H3 and E5 cells were dispersed in the cytoplasm. After 1 hr, the endocytic vesicles of the RBL-2H3 cells had fused and formed clusters, whereas in the E5 cells, the fusion was slower. In contrast, in D1 cells, the endocytic vesicles were smaller and remained close to the plasma membrane even after 3 hr of incubation. When incubated with BC4-FITC and subsequently imunolabeled for markers of various endocytic compartments, a defect in the endocytic pathway in the E5 and D1 cells became evident. In the D1 cells, this defect was observed at the initial steps of endocytosis. Therefore, the ganglioside derivatives from GD1b are important in the endocytosis of Fc epsilon RI in mast cells. Because gangliosides may play a role in mast cell-related disease processes, they provide an attractive target for drug therapy and diagnosis. (J Histochem Cytochem 59:428-440, 2011)