982 resultados para ADMET predictions
Resumo:
In this work, we have used molecular dynamics, density functional theory, virtual screening, ADMET predictions, and molecular interaction field studies to design and propose eight novel potential inhibitors of CDK2. The eight molecules proposed showed interesting structural characteristics that are required for inhibiting the CDK2 activity and show potential as drug candidates for the treatment of cancer. The parameters related to the Rule of Five were calculated, and only one of the molecules violated more than one parameter. One of the proposals and one of the drug-like compounds selected by virtual screening indicated to be promising candidates for CDK2-based cancer therapy.
Resumo:
We have used various computational methodologies including molecular dynamics, density functional theory, virtual screening, ADMET predictions and molecular interaction field studies to design and analyze four novel potential inhibitors of farnesyltransferase (FTase). Evaluation of two proposals regarding their drug potential as well as lead compounds have indicated them as novel promising FTase inhibitors, with theoretically interesting pharmacotherapeutic profiles, when Compared to the very active and most cited FTase inhibitors that have activity data reported, which are launched drugs or compounds in clinical tests. One of our two proposals appears to be a more promising drug candidate and FTase inhibitor, but both derivative molecules indicate potentially very good pharmacotherapeutic profiles in comparison with Tipifarnib and Lonafarnib, two reference pharmaceuticals. Two other proposals have been selected with virtual screening approaches and investigated by LIS, which suggest novel and alternatives scaffolds to design future potential FTase inhibitors. Such compounds can be explored as promising molecules to initiate a research protocol in order to discover novel anticancer drug candidates targeting farnesyltransferase, in the fight against cancer. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Monoamine oxidase is a flavoenzyme bound to the mitochondrial outer membranes of the cells, which is responsible for the oxidative deamination of neurotransmitter and dietary amines. It has two distinct isozymic forms, designated MAO-A and MAO-B, each displaying different substrate and inhibitor specificities. They are the well-known targets for antidepressant, Parkinson`s disease, and neuroprotective drugs. Elucidation of the x-ray crystallographic structure of MAO-B has opened the way for the molecular modeling studies. In this work we have used molecular modeling, density functional theory with correlation, virtual screening, flexible docking, molecular dynamics, ADMET predictions, and molecular interaction field studies in order to design new molecules with potential higher selectivity and enzymatic inhibitory activity over MAO-B.
Resumo:
Literature presents a huge number of different simulations of gas-solid flows in risers applying two-fluid modeling. In spite of that, the related quantitative accuracy issue remains mostly untouched. This state of affairs seems to be mainly a consequence of modeling shortcomings, notably regarding the lack of realistic closures. In this article predictions from a two-fluid model are compared to other published two-fluid model predictions applying the same Closures, and to experimental data. A particular matter of concern is whether the predictions are generated or not inside the statistical steady state regime that characterizes the riser flows. The present simulation was performed inside the statistical steady state regime. Time-averaged results are presented for different time-averaging intervals of 5, 10, 15 and 20 s inside the statistical steady state regime. The independence of the averaged results regarding the time-averaging interval is addressed and the results averaged over the intervals of 10 and 20 s are compared to both experiment and other two-fluid predictions. It is concluded that the two-fluid model used is still very crude, and cannot provide quantitative accurate results, at least for the particular case that was considered. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The DSSAT/CANEGRO model was parameterized and its predictions evaluated using data from five sugarcane (Sacchetrum spp.) experiments conducted in southern Brazil. The data used are from two of the most important Brazilian cultivars. Some parameters whose values were either directly measured or considered to be well known were not adjusted. Ten of the 20 parameters were optimized using a Generalized Likelihood Uncertainty Estimation (GLUE) algorithm using the leave-one-out cross-validation technique. Model predictions were evaluated using measured data of leaf area index (LA!), stalk and aerial dry mass, sucrose content, and soil water content, using bias, root mean squared error (RMSE), modeling efficiency (Eff), correlation coefficient, and agreement index. The Decision Support System for Agrotechnology Transfer (DSSAT)/CANEGRO model simulated the sugarcane crop in southern Brazil well, using the parameterization reported here. The soil water content predictions were better for rainfed (mean RMSE = 0.122mm) than for irrigated treatment (mean RMSE = 0.214mm). Predictions were best for aerial dry mass (Eff = 0.850), followed by stalk dry mass (Eff = 0.765) and then sucrose mass (Eff = 0.170). Number of green leaves showed the worst fit (Eff = -2.300). The cross-validation technique permits using multiple datasets that would have limited use if used independently because of the heterogeneity of measures and measurement strategies.
Resumo:
Thymidine monophosphate kinase (TMPK) has emerged as an attractive target for developing inhibitors of Mycobacterium tuberculosis growth. In this study the receptor-independent (RI) 4D-QSAR formalism has been used to develop QSAR models and corresponding 3D-pharmacophores for a set of 5`-thiourea-substituted alpha-thymidine inhibitors. Models were developed for the entire training set and for a subset of the training set consisting of the most potent inhibitors. The optimized (RI) 4D-QSAR models are statistically significant (r(2) = 0.90, q(2) = 0.83 entire set, r(2) = 0.86, q(2) = 0.80 high potency subset) and also possess good predictivity based on test set predictions. The most and least potent inhibitors, in their respective postulated active conformations derived from the models, were docked in the active site of the TMPK crystallographic structure. There is a solid consistency between the 3D-pharmacophore sites defined by the QSAR models and interactions with binding site residues. This model identifies new regions of the inhibitors that contain pharmacophore sites, such as the sugar-pyrimidine ring structure and the region of the 5`-arylthiourea moiety. These new regions of the ligands can be further explored and possibly exploited to identify new, novel, and, perhaps, better antituberculosis inhibitors of TMPKmt. Furthermore, the 3D-pharmacophores defined by these models can be used as a starting point for future receptor-dependent antituberculosis drug design as well as to elucidate candidate sites for substituent addition to optimize ADMET properties of analog inhibitors.
Resumo:
Models of population dynamics are commonly used to predict risks in ecology, particularly risks of population decline. There is often considerable uncertainty associated with these predictions. However, alternatives to predictions based on population models have not been assessed. We used simulation models of hypothetical species to generate the kinds of data that might typically be available to ecologists and then invited other researchers to predict risks of population declines using these data. The accuracy of the predictions was assessed by comparison with the forecasts of the original model. The researchers used either population models or subjective judgement to make their predictions. Predictions made using models were only slightly more accurate than subjective judgements of risk. However, predictions using models tended to be unbiased, while subjective judgements were biased towards over-estimation. Psychology literature suggests that the bias of subjective judgements is likely to vary somewhat unpredictably among people, depending on their stake in the outcome. This will make subjective predictions more uncertain and less transparent than those based on models. (C) 2004 Elsevier SAS. All rights reserved.
Resumo:
This paper describes the construction of Australia-wide soil property predictions from a compiled national soils point database. Those properties considered include pH, organic carbon, total phosphorus, total nitrogen, thickness. texture, and clay content. Many of these soil properties are used directly in environmental process modelling including global climate change models. Models are constructed at the 250-m resolution using decision trees. These relate the soil property to the environment through a suite of environmental predictors at the locations where measurements are observed. These models are then used to extend predictions to the continental extent by applying the rules derived to the exhaustively available environmental predictors. The methodology and performance is described in detail for pH and summarized for other properties. Environmental variables are found to be important predictors, even at the 250-m resolution at which they are available here as they can describe the broad changes in soil property.
Resumo:
We show that stochastic electrodynamics and quantum mechanics give quantitatively different predictions for the quantum nondemolition (QND) correlations in travelling wave second harmonic generation. Using phase space methods and stochastic integration, we calculate correlations in both the positive-P and truncated Wigner representations, the latter being equivalent to the semi-classical theory of stochastic electrodynamics. We show that the semiclassical results are different in the regions where the system performs best in relation to the QND criteria, and that they significantly overestimate the performance in these regions. (C) 2001 Published by Elsevier Science B.V.
Resumo:
Considering genetic relatedness among species has long been argued as an important step toward measuring biological diversity more accurately, rather than relying solely on species richness. Some researchers have correlated measures of phylogenetic diversity and species richness across a series of sites and suggest that values of phylogenetic diversity do not differ enough from those of species richness to justify their inclusion in conservation planning. We compared predictions of species richness and 10 measures of phylogenetic diversity by creating distribution models for 168 individual species of a species-rich plant family, the Cape Proteaceae. When we used average amounts of land set aside for conservation to compare areas selected on the basis of species richness with areas selected on the basis of phylogenetic diversity, correlations between species richness and different measures of phylogenetic diversity varied considerably. Correlations between species richness and measures that were based on the length of phylogenetic tree branches and tree shape were weaker than those that were based on tree shape alone. Elevation explained up to 31% of the segregation of species rich versus phylogenetically rich areas. Given these results, the increased availability of molecular data, and the known ecological effect of phylogenetically rich communities, consideration of phylogenetic diversity in conservation decision making may be feasible and informative.
Resumo:
A better understanding of the factors that mould ecological community structure is required to accurately predict community composition and to anticipate threats to ecosystems due to global changes. We tested how well stacked climate-based species distribution models (S-SDMs) could predict butterfly communities in a mountain region. It has been suggested that climate is the main force driving butterfly distribution and community structure in mountain environments, and that, as a consequence, climate-based S-SDMs should yield unbiased predictions. In contrast to this expectation, at lower altitudes, climate-based S-SDMs overpredicted butterfly species richness at sites with low plant species richness and underpredicted species richness at sites with high plant species richness. According to two indices of composition accuracy, the Sorensen index and a matching coefficient considering both absences and presences, S-SDMs were more accurate in plant-rich grasslands. Butterflies display strong and often specialised trophic interactions with plants. At lower altitudes, where land use is more intense, considering climate alone without accounting for land use influences on grassland plant richness leads to erroneous predictions of butterfly presences and absences. In contrast, at higher altitudes, where climate is the main force filtering communities, there were fewer differences between observed and predicted butterfly richness. At high altitudes, even if stochastic processes decrease the accuracy of predictions of presence, climate-based S-SDMs are able to better filter out butterfly species that are unable to cope with severe climatic conditions, providing more accurate predictions of absences. Our results suggest that predictions should account for plants in disturbed habitats at lower altitudes but that stochastic processes and heterogeneity at high altitudes may limit prediction success of climate-based S-SDMs.
Resumo:
Genetic polymorphism can be maintained over time by negative frequency-dependent (FD) selection induced by Rock-paper-scissors (RPS) social systems. RPS games produce cyclic dynamics, and have been suggested to exist in lizards, insects, isopods, plants, and bacteria. Sexual selection is predicted to accentuate the survival of the future progeny during negative FD survival selection. More specifically, females are predicted to select mates that produce progeny genotypes that exhibit highest survival during survival selection imposed by adult males. However, no empirical evidence demonstrates the existence of FD sexual selection with respect to fitness payoffs of genetic polymorphisms. Here we tested this prediction using the common lizard Zootoca vivipara, a species with three male color morphs (orange, white, yellow) that exhibit morph frequency cycles. In a first step we tested the congruence of the morph frequency change with the predicted change in three independent populations, differing in male color morph frequency and state of the FD morph cycle. Thereafter we ran standardized sexual selection assays in which we excluded alternative mechanisms that potentially induce negative FD selection, and we quantified inter-sexual behavior. The patterns of sexual selection and the observed behavior were in line with context-dependent female mate choice and male behavior played a minor role. Moreover, the strength of the sexual selection was within the magnitude of selection required to produce the observed 3-4-year and 6-8 year morph frequency cycles at low and high altitudes, respectively. In summary, the study provides the first experimental evidence that underpins the crucial assumption of the RPS games suggested to exist in lizards, insects, isopods, and plants; namely, that sexual selection produces negative-FD selection. This indicates that sexual selection, in our study exert by females, might be a crucial driver of the maintenance of genetic polymorphisms.
Resumo:
The integration of geophysical data into the subsurface characterization problem has been shown in many cases to significantly improve hydrological knowledge by providing information at spatial scales and locations that is unattainable using conventional hydrological measurement techniques. The investigation of exactly how much benefit can be brought by geophysical data in terms of its effect on hydrological predictions, however, has received considerably less attention in the literature. Here, we examine the potential hydrological benefits brought by a recently introduced simulated annealing (SA) conditional stochastic simulation method designed for the assimilation of diverse hydrogeophysical data sets. We consider the specific case of integrating crosshole ground-penetrating radar (GPR) and borehole porosity log data to characterize the porosity distribution in saturated heterogeneous aquifers. In many cases, porosity is linked to hydraulic conductivity and thus to flow and transport behavior. To perform our evaluation, we first generate a number of synthetic porosity fields exhibiting varying degrees of spatial continuity and structural complexity. Next, we simulate the collection of crosshole GPR data between several boreholes in these fields, and the collection of porosity log data at the borehole locations. The inverted GPR data, together with the porosity logs, are then used to reconstruct the porosity field using the SA-based method, along with a number of other more elementary approaches. Assuming that the grid-cell-scale relationship between porosity and hydraulic conductivity is unique and known, the porosity realizations are then used in groundwater flow and contaminant transport simulations to assess the benefits and limitations of the different approaches.