995 resultados para ADIABATIC MATTER CREATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of cosmological particle creation for a spatially flat, homogeneous and isotropic universes is discussed in the context of f (R) theories of gravity. Different from cosmological models based on general relativity theory, it is found that a conformal invariant metric does not forbid the creation of massless particles during the early stages (radiation era) of the universe. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, de Roany and Pacheco (Gen Relativ Gravit, doi:10.1007/s10714-010-1069-2) performed a Newtonian analysis on the evolution of perturbations for a class of relativistic cosmological models with Creation of Cold Dark Matter (CCDM) proposed by the present authors (Lima et al. in JCAP 1011:027, 2010). In this note we demonstrate that the basic equations adopted in their work do not recover the specific (unperturbed) CCDM model. Unlike to what happens in the original CCDM cosmology, their basic conclusions refer to a decelerating cosmological model in which there is no transition from a decelerating to an accelerating regime as required by SNe type Ia and complementary observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermodynamic properties of dark energy fluids described by an equation of state parameter omega = p/rho are rediscussed in the context of FRW type geometries. Contrarily to previous claims, it is argued here that the phantom regime omega < -1 is not physically possible since that both the temperature and the entropy of every physical fluids must be always positive definite. This means that one cannot appeal to negative temperature in order to save the phantom dark energy hypothesis as has been recently done in the literature. Such a result remains true as long as the chemical potential is zero. However, if the phantom fluid is endowed with a non-null chemical potential, the phantom field hypothesis becomes thermodynamically consistent, that is, there are macroscopic equilibrium states with T > 0 and S > 0 in the course of the Universe expansion. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a new class of accelerating world models unifying the cosmological dark sector (dark matter and dark energy). All the models are described by a simplified version of the Chaplygin gas quartessence cosmology. It is found that even for Omega(k) not equal 0, this quartessence scenario depends only on a pair of parameters which can severely be constrained by the cosmological tests. As an example we perform a joint analysis involving the latest SNe type la data and the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations. In our analysis we have considered the SNe type la Union sample compiled by Kowalski et al. [M. Kowalski et al., Astrophys. J. 686 (2008) 749, arXiv:0804.4142]. At 95.4% (c.l.), we find for BAD + Union sample, alpha = 0.81(-0.04)(+0.04) and Omega(Q4) = 1.15(-0.17)(+0.16) The best-fit for this simplified quartessence scenario is a spatially closed Universe and its reduced chi(2) is exactly the same of the flat concordance model (Lambda CDM). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new accelerating cosmology driven only by baryons plus cold dark matter (CDM) is proposed in the framework of general relativity. In this scenario the present accelerating stage of the Universe is powered by the negative pressure describing the gravitationally-induced particle production of cold dark matter particles. This kind of scenario has only one free parameter and the differential equation governing the evolution of the scale factor is exactly the same of the Lambda CDM model. For a spatially flat Universe, as predicted by inflation (Omega(dm) + Omega(baryon) = 1), it is found that the effectively observed matter density parameter is Omega(meff) = 1 - alpha, where alpha is the constant parameter specifying the CDM particle creation rate. The supernovae test based on the Union data (2008) requires alpha similar to 0.71 so that Omega(meff) similar to 0.29 as independently derived from weak gravitational lensing, the large scale structure and other complementary observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an alternative, nonsingular, cosmic scenario based on gravitationally induced particle production. The model is an attempt to evade the coincidence and cosmological constant problems of the standard model (Lambda CDM) and also to connect the early and late time accelerating stages of the Universe. Our space-time emerges from a pure initial de Sitter stage thereby providing a natural solution to the horizon problem. Subsequently, due to an instability provoked by the production of massless particles, the Universe evolves smoothly to the standard radiation dominated era thereby ending the production of radiation as required by the conformal invariance. Next, the radiation becomes subdominant with the Universe entering in the cold dark matter dominated era. Finally, the negative pressure associated with the creation of cold dark matter (CCDM model) particles accelerates the expansion and drives the Universe to a final de Sitter stage. The late time cosmic expansion history of the CCDM model is exactly like in the standard Lambda CDM model; however, there is no dark energy. The model evolves between two limiting (early and late time) de Sitter regimes. All the stages are also discussed in terms of a scalar field description. This complete scenario is fully determined by two extreme energy densities, or equivalently, the associated de Sitter Hubble scales connected by rho(I)/rho(f) = (H-I/H-f)(2) similar to 10(122), a result that has no correlation with the cosmological constant problem. We also study the linear growth of matter perturbations at the final accelerating stage. It is found that the CCDM growth index can be written as a function of the Lambda growth index, gamma(Lambda) similar or equal to 6/11. In this framework, we also compare the observed growth rate of clustering with that predicted by the current CCDM model. Performing a chi(2) statistical test we show that the CCDM model provides growth rates that match sufficiently well with the observed growth rate of structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Improved biopharmaceutical delivery may be achieved via the use of biodegradable microspheres as delivery vehicles. Biodegradable microspheres offer the advantages of maintaining sustained protein release over time whilst simultaneously protecting the biopharmaceutical from degradation. Particle samples produced by ultrasonic atomization were studied in order to determine a feed stock capable of producing protein loaded poly-ε-caprolactone (PCL) particles suitable for nasal delivery (i.e., less than 20 μm). A 40 kHz atomization system was used with a 6 mm full wave atomization probe. The effect of solids percent, feed flow rate, volumetric ratio of the polymer stock to the protein stock, and protein concentration in the protein stock on particle size characteristics were determined. It was shown that feed stocks containing 100 parts of 0.5 or 1.0% w/v PCL in acetone with one part 100 mg ml -1 BSA and 15 mg ml -1 PVA produced particles with a mass moment diameter (D[4,3]) of 13.17 μm and 9.10 μm, respectively in addition to displaying high protein encapsulation efficiencies of 93 and 95%, respectively. The biodegradable PCL particles were shown to be able to deliver encapsulated protein in vitro under physiological conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work we obtain the cosmological solutions and investigate the thermodynamics of matter creation in two diferent contexts. In the first we propose a cosmological model with a time varying speed of light c. We consider two diferent time dependence of c for a at Friedmann-Robertson- Walker (FRW) universe. We write the energy conservation law arising from Einstein equations and study how particles are created as c decreases with cosmic epoch. The variation of c is coupled to a cosmological Λ term and both singular and non-singular solutions are possible. We calculate the "adiabatic" particle creation rate and the total number of particles as a function of time and find the constrains imposed by the second law of thermodynamics upon the models. In the second scenario, we study the nonlinearity of the electrodynamics as a source of matter creation in the cosmological models with at FRW geometry. We write the energy conservation law arising from Einstein field equations with cosmological term Λ, solve the field equations and study how particles are created as the magnetic field B changes with cosmic epoch. We obtain solutions for the adiabatic particle creation rate, the total number of particles and the scale factor as a function of time in three cases: Λ = 0, Λ = constant and Λ α H2 (cosmological term proportional to the Hubble parameter). In all cases, the second law of thermodynamics demands that the universe is not contracting (H ≥ 0). The first two solutions are non-singular and exhibit in ationary periods. The third case studied allows an always in ationary universe for a suficiently large cosmological term

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The negative pressure accompanying gravitationally-induced particle creation can lead to a cold dark matter (CDM) dominated, accelerating Universe (Lima et al. 1996 [1]) without requiring the presence of dark energy or a cosmological constant. In a recent study, Lima et al. 2008 [2] (LSS) demonstrated that particle creation driven cosmological models are capable of accounting for the SNIa observations [3] of the recent transition from a decelerating to an accelerating Universe, without the need for Dark Energy. Here we consider a class of such models where the particle creation rate is assumed to be of the form Gamma = beta H + gamma H(0), where H is the Hubble parameter and H(0) is its present value. The evolution of such models is tested at low redshift by the latest SNe Ia data provided by the Union compilation [4] and at high redshift using the value of z(eq), the redshift of the epoch of matter - radiation equality, inferred from the WMAP constraints on the early Integrated Sachs-Wolfe (ISW) effect [5]. Since the contributions of baryons and radiation were ignored in the work of LSS, we include them in our study of this class of models. The parameters of these more realistic models with continuous creation of CDM are constrained at widely-separated epochs (z(eq) approximate to 3000 and z approximate to 0) in the evolution of the Universe. The comparison of the parameter values, {beta, gamma}, determined at these different epochs reveals a tension between the values favored by the high redshift CMB constraint on z(eq) from the ISW and those which follow from the low redshift SNIa data, posing a potential challenge to this class of models. While for beta = 0 this conflict is only at less than or similar to 2 sigma, it worsens as beta increases from zero.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent astronomical observations (involving supernovae type Ia, cosmic background radiation anisotropy and galaxy clusters probes) have provided strong evidence that the observed universe is described by an accelerating, flat model whose space-time properties can be represented by the FriedmannRobertsonWalker (FRW) metric. However, the nature of the substance or mechanism behind the current cosmic acceleration remains unknown and its determination constitutes a challenging problem for modern cosmology. In the general relativistic description, an accelerat ing regime is usually obtained by assuming the existence of an exotic energy component endowed with negative pressure, called dark energy, which is usually represented by a cosmological constant ¤ associated to the vacuum energy density. All observational data available so far are in good agreement with the concordance cosmic ¤CDM model. Nevertheless, such models are plagued with several problems thereby inspiring many authors to propose alternative candidates in the relativistic context. In this thesis, a new kind of accelerating flat model with no dark energy and fully dominated by cold dark matter (CDM) is proposed. The number of CDM particles is not conserved and the present accelerating stage is a consequence of the negative pressure describing the irreversible process of gravitational particle creation. In order to have a transition from a decelerating to an accelerating regime at low redshifts, the matter creation rate proposed here depends on 2 parameters (y and ߯): the first one identifies a constant term of the order of H0 and the second one describes a time variation proportional to he Hubble parameter H(t). In this scenario, H0 does not need to be small in order to solve the age problem and the transition happens even if there is no matter creation during the radiation and part of the matter dominated phase (when the ß term is negligible). Like in flat ACDM scenarios, the dimming of distant type Ia supernovae can be fitted with just one free parameter, and the coincidence problem plaguing the models driven by the cosmological constant. ACDM is absent. The limits endowed with with the existence of the quasar APM 08279+5255, located at z = 3:91 and with an estimated ages between 2 and 3 Gyr are also investigated. In the simplest case (ß = 0), the model is compatible with the existence of the quasar for y > 0:56 whether the age of the quasar is 2.0 Gyr. For 3 Gyr the limit derived is y > 0:72. New limits for the formation redshift of the quasar are also established

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We discuss a new interacting model for the cosmological dark sector in which the attenuated dilution of cold dark matter scales as a(-3)f(a), where f(a) is an arbitrary function of the cosmic scale factor a. From thermodynamic arguments, we show that f(a) is proportional to the entropy source of the particle creation process. In order to investigate the cosmological consequences of this kind of interacting models, we expand f(a) in a power series, and viable cosmological solutions are obtained. Finally, we use current observational data to place constraints on the interacting function f(a).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper explores empirically effects of Effectuation on nascent firms’ performance. Three potential outcomes for nascent firms using different levels of effectuation and causation are investigated. Innovation, a measure of venture sophistication was introduced as a moderator. We examine a longitudinal random sample of 625 nascent firms collected over two years in Australia and provide support for our hypotheses. Results show that in situation of high uncertainty, nascent firms using effectuation are more likely to reach operational stage than their counterpart using causation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A non-adiabatic quantum molecular dynamics approach for treating the interaction of matter with intense, short-duration laser pulses is developed. This approach, which is parallelized to run on massively-parallel supercomputers, is shown to be both accurate and efficient. Illustrative results are presented for harmonic generation occurring in diatomic molecules using linearly polarized laser pulses.