947 resultados para ADENOSINE-TRIPHOSPHATASE
Resumo:
The antihypercholesterolemic drug clofibrate (ethyl-α-p-chlorophenoxyisobutyrate) stimulated the latent ATPase activity and “superstimulated” the uncoupler-induced ATPase activity of rat-liver mitochondria. Addition of clofibrate decreased the turbidity of mitochondrial suspensions and released considerable amount of mitochondrial protein into solution. In these properties it closely resembled detergents like Triton X-100 and deoxycholate. However, unlike the detergents, clofibrate required the presence of a permeant cation for its disruptive action. Also, it was without any such effect on sonic submitochondrial particles. The drug enhanced the uptake of both Mg2 and Cl− by mitochondria suggesting that osmotic swelling precedes lysis. Sonic submitochondrial particles prepared in the presence of clofibrate showed a greater yield and comparable ATPase activity.
Resumo:
RNA interference induced in insects after ingestion of plant-expressed hairpin RNA offers promise for managing devastating crop pests
Resumo:
Background Menstrual effluent affects mesothelial cell (MC) morphology. We evaluated whether these changes were consistent with epithelial-mesenchymal transitions (EMT). Methods Monolayer cultures of MC were incubated overnight in conditioned media, prepared from cells isolated form menstrual effluent, with or without kinase and ATP inhibitors. Changes in cell morphology were monitored using time-lapse video microscopy and immunohistochemistry. Effects on the expression of EMT-associated molecules were evaluated using real-time RT-PCR and/or Western blot analysis. Results Incubation in conditioned media disrupted cell-cell contacts, and increased MC motility. The changes were reversible. During the changes the distribution of cytokeratins, fibrillar actin and α-tubulin changed. Sodium azide, an inhibitor of ATP production, and Genistein, a general tyrosine kinase inhibitor, antagonized these effects. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, and SU6656, an Src tyrosine kinase inhibitor, only partially antagonized the effect. The expression of Snail and vimentin was markedly up-regulated, whereas the expression of E-cadherin was decreased and cytokeratins were altered. Conclusions In MC, menstrual effluent initiates a reversible, energy-dependent transition process from an epithelial to a mesenchymal phenotype. Involvement of the (Src) tyrosine kinase signalling pathway and the changes in the expression of cytokeratins, Snail, vimentin and E-cadherin demonstrate that the morphological changes are EMT.
Resumo:
Bidirectional (anterograde and retrograde) motor-based intraflagellar transport (IFT) governs cargo transport and delivery processes that are essential for primary cilia growth and maintenance and for hedgehog signaling functions. The IFT dynein-2 motor complex that regulates ciliary retrograde protein transport contains a heavy chain dynein ATPase/motor subunit, DYNC2H1, along with other less well functionally defined subunits. Deficiency of IFT proteins, including DYNC2H1, underlies a spectrum of skeletal ciliopathies. Here, by using exome sequencing and a targeted next-generation sequencing panel, we identified a total of 11 mutations in WDR34 in 9 families with the clinical diagnosis of Jeune syndrome (asphyxiating thoracic dystrophy). WDR34 encodes a WD40 repeat-containing protein orthologous to Chlamydomonas FAP133, a dynein intermediate chain associated with the retrograde intraflagellar transport motor. Three-dimensional protein modeling suggests that the identified mutations all affect residues critical for WDR34 protein-protein interactions. We find that WDR34 concentrates around the centrioles and basal bodies in mammalian cells, also showing axonemal staining. WDR34 coimmunoprecipitates with the dynein-1 light chain DYNLL1 in vitro, and mining of proteomics data suggests that WDR34 could represent a previously unrecognized link between the cytoplasmic dynein-1 and IFT dynein-2 motors. Together, these data show that WDR34 is critical for ciliary functions essential to normal development and survival, most probably as a previously unrecognized component of the mammalian dynein-IFT machinery.
Resumo:
1. a-p-Chlorophenoxyisobutyric acid, the ethyl ester of which is widely used as an antihypercholesterolaemic drug, is an inhibitor of energy-transfer reactions in isolated rat liver mitochondria. 2. The compound at lower concentrations (<4.0mmol/mg of mitochondrial protein) inhibits state 3 oxidation, stimulates state 4 oxidation, abolishes respiratory control and stimulates the latent adenosine triphosphatase activity of mitochondria. The inhibition imposed on state 3 oxidation is relieved by dinitrophenol. 3. At higher concentrations it inhibits coupled phosphorylation as well as dinitrophenol-stimulated adenosine triphosphatase activity. The inhibition of state 3 oxidation under these conditions is not reversed by uncouplers. 4. The three coupling sites of phosphorylation exhibit differential susceptibility to inactivation by this compound. Coupled phosphorylation at the first site is abolished at a drug concentration of 3.0mmol/mg of protein. The third site is inactivated when the concentration of the drug reaches 5.0mmol/mg of protein. The second site is the most refractory and drug concentrations of the order of 10.0mmol/mg of protein are required effectively to inhibit phosphorylation at this site. 5. The compound also inhibits ATP-dependent reversal of electron transport as well as the adenosine triphosphatase activity in submitochondrial particles. 6. The oxidation of NADH and succinate in these particles is not inhibited. 7. These properties indicate that the compound acts as an `inhibitory uncoupler' of energy-transfer reactions in isolated mitochondria.
Resumo:
Two variants of a simplified procedure for the isolation of plasma membrane fractions from monkey and rat brains, are described. The preparations show marked enrichments in the marker enzymes, (Na+-K+) adenosine triphosphatase, acetylcholinesterase, 5′-nucleotidase and adenylate cyclase. Lipid analysis and a protein electrophoretic pattern are presented. An enzymatic check has been made to assess for contamination by other cellular organelles. The amino acid composition of brain membrane proteins show a resemblance to the reported composition of erythrocyte ghost proteins but differ from myelin proteins.
Resumo:
Methyl isocyanate (MIC) interaction with the rabbit erythrocyte membrane increased the fluidity of the membrane and decreased the osmotic fragility of erythrocytes both in vitro and in vivo in rabbits intoxicated with MIC subcutaneously. MIC inhibited both acetylcholinesterase (AChE) and adenosine triphosphatase (ATPase) activities of erythrocytes dose-dependently in vitro, while in vivo a decreased trend in ATPase activity with unaltered AChE activity was observed. MIC also caused significant decrease in plasma sodium level with corresponding increase in potassium level in rabbits. The observed effects are due to MIC, per se, as the hydrolysis products of MIC, methylamine and N,Nprime-dimethylurea did not affect the erythrocyte fluidity and enzymes activities both in vitro and in vivo while they increased the osmotic fragility of erythrocytes in vivo in rabbits administered subcutaneously in equimolar concentration to MIC dosage. Inhibition of Na+-K+-dependent ATPase with altered permeability to cations and also probably water transport of plasma membrane due to MIC interaction are envisaged.
Resumo:
Iron is an essential trace element for biological requirements of phytoplankton. Effects of iron on physiological and biochemical characteristics of Microcystis wesenbergii were conducted in this study. Results showed that 0.01 mu M [Fe3+] seriously inhibited growth and chlorophyll synthesis of M. wesenbergii, and induced temporary increase of ATPase activities, however, NR. ACP and ALP activities were restrained by iron limitation. Interestingly, iron addition on day 8 resulted in the gradual restoration of structures and functions of above enzymes and resisted a variety of stresses from iron limitation. M. wesenbergii in 10 mu M [Fe3+] treatment group grew normally. enzymes maintained normal levels, and residual phosphate contents in cultures first sharply decreased, then smoothly as M. wesenbergii has a characteristic of luxury consumption of phosphorus. Above parameters in 100 mu M [Fe3+] treatment group were almost same with those in 10 mu M [Fe3+] treatment group except for NR, ACP and ALP activities. In 100 mu M [Fe3+] treatment group, activities of ACP and ALP had temporary increase because phosphate and ferric iron could form insoluble compound - ferric phosphate (Fe3PO4) through adsorption effect. resulting in lack of bioavailable phosphate in culture media. The experiment suggested that too low or too high iron can affect obviously physiological and biochemical characteristics of M. wesenbergii.
Resumo:
Medium' alkaliniiation occurred -lipon the addition of L-Glu to mechanically isolated Asparagus sprenger-i mesophyll cells suspended in 1 mM CaS04. Alkalinization resulted from the coupled entry of H+ and L-Glu anion into the cells. This H+ IL-Glu symport did not stimulate K+ efflux. K+ efflux has been observed during H~ lamino acid symport in other systems. The stimulation of K+ efflux by proton coupled symport is regarded as an indicator of a plasma membrane depolarizing electrogenic symport process. H+ IL-Glu symport in Asparagus sprengerimesophyl1 cells was investigated to determine whether or not the process was electrogenic. The rate of uptake of 0.25 11M 3H-MTPP+ ( Methyltriphenylphosphonium, methyl-3H ) is a probe for monitoring changes in the membrane potential. 3HMTPP+ uptake was reduced by K+ or CCCP, agents known to depolarize the membrane potential. Uptake of 3H-MTPP+ was also inhibited by L-Glu but not by D-Glu. Conversely, 10 mM external MTPP+ inhibited the uptake of 14C-U-LGlu. Simultaneous measurements of the rates of 14C-U-L-Glu uptake and L-Glu dependent H+ influx showed that the molar stoichiometry of H+ IL-Glu symport was 2 to 1. K+ or Na+ stimulated H+ efflux was completely inhibited by DCCD, DES, oligomycin and antimycin reagents which inhibit ATP driven H+ efflux. The H+ efflux \Vas also stimulate.d by the weak acids, butyric acid and acetic acid, which are known fo-aCidify the cytoplasm. This weak acid stimulated H+ efflux was also completely inhibited by oligomycin. It was calculated that net L-Glu dependent H+ influx increased by 100% in the presence of oligomycin and that despite net medium alkalinization H+ IL-Glu symport stimulates ATP dependent H+ efflux. 11 The data presented in this study indicate that H+ IL-Glu symport is electrogenic. The data also show that ATP dependent Ht efflux rather than K+ efflux is the- process compensating for thi~ electrogenic H+ IL-Glu symport.
Resumo:
The aim of this work was to characterize the distribution of myofibers in the gluteus medius muscle of inactive horses of the Brasileiro de Hipismo (BH) breed at different ages by means of histochemical analyses, according to sex and depth of the biopsy. A total of 78 inactive horses (9 castrated males, 35 stallions, and 34 females) of the BH breed, aged 1 to 4 years, were used. A percutaneous muscle biopsy was obtained with a 6.0-mm Bergstrom-type needle, which allowed the removal of muscle fragments at depths of 20 and 60 mm. Myofiber types were determined based on myofibrillar adenosine triphosphatase (mATPase) and nicotinamide dinucleotide tetrazolium reductase (NADH-TR) techniques. Morphometry of the fibers was determined based on cross-sectional area (CSA), mean frequency (F), and relative cross-sectional area (RCSA). The current study demonstrated that BH horses 3 and 4 years of age show a greater percentage of, and area occupied by, type IIA fibers and lower percentage of type IIX fibers in the gluteus medius muscle compared with horses 1 and 2 years of age. No difference was found between sexes in the frequency of and area occupied by the different fiber types at any of the depths and ages studied. In this study, females showed a greater CSA for all fibers in comparison with males, at 1 year of age. The results of the current study indicate that the gluteus medius muscle of inactive BH horses shows modifications in its structural and biochemical composition during the growth of the animals, leading to a better oxidative capacity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nanostructured calcium phosphate (CaP) has been histologically and biomechanically proven to enhance osseointegration of implants; however, conventional techniques were not sufficiently sensitive to capture its biological effects fully. Here, we compared the conventional removal torque (RTQ) evaluation and gene expression in tissues around nanostructured CaP-coated implants, using real-time RT-PCR, with those of uncoated implants, in a rabbit model. At 2 wks, RTQ values were significantly higher, alkaline phosphatase (ALP) expression was significantly higher, and runt-related transcription factor 2 and tumor necrosis factor-alpha expressions were significantly lower in the coated than in the uncoated implants. This indicates that inflammatory responses were suppressed and osteoprogenitor activity increased around the CaP-coated surface. At 4 wks, although RTQ values did not significantly differ between the 2 groups, ALP and osteocalcin (OCN) were significantly up-regulated in the coated group, indicating progressive mineralization of the bone around the implant. Moreover, an osteoclast marker, adenosine triphosphatase, which indicates acidification of the resorption lacunae, was significantly higher for the coated implants, suggesting gradual resorption of the CaP coating. This study reveals detailed genetic responses to nanostructured CaP-coated implants and provides evidence that the effect of nanotopography is significant during the osseointegration cascade.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of the present study was to investigate the effect of oral supplementation of creatine on the muscular responses to aerobic training. Twelve purebred Arabian horses were submitted to aerobic training for 90 d, with and without creatine supplementation, and evaluated with respect to BW and BCS and to the area and frequency of the different types of muscle fibers in the gluteus medius. Supplementation consisted of the daily administration of 75 g of creatine monohydrate mixed into the ration for the 90 d of training. Physical conditioning was conducted on a high-performance treadmill, and training intensity was stipulated by calculating the velocity at which blood lactate reaches 4 mmol/L, determined monthly for each animal. The individual intensity of physical force at 80% of aerobic threshold was established. Morphometry of glutens medius muscle fibers was performed on frozen sections processed for histochemical analysis of myosin adenosine triphosphatase and immunohistochemistry of slow-contracting myosin. The results demonstrated that the animals maintained a moderate BCS without alteration of BW during the course of training, providing evidence of equilibrium between food intake and caloric expenditure during the study period. The present study demonstrated that aerobic training for 90 d caused hypertrophy of fiber types I (P = 0.04), IIA (P = 0.04), and IIX (P = 0.01), as well as an increase in the relative area occupied by type I fibers (P = 0.02) at the expense of type IIX fibers (P = 0.03), resulting in modifications of the contractile and metabolic characteristics of the gluteus medius muscle. It was not possible to show any beneficial effect from creatine on the skeletal muscle characteristics examined.