999 resultados para ADENOSINE STRESS
Resumo:
Recently, stress myocardial computed tomographic perfusion (CTP) was shown to detect myocardial ischemia. Our main objective was to evaluate the feasibility of dipyridamole stress CTP and compare it to single-photon emission computed tomography (SPECT) to detect significant coronary stenosis using invasive conventional coronary angiography (CCA; stenosis >70%) as the reference method. Thirty-six patients (62 +/- 8 years old, 20 men) with previous positive results with SPECT (<2 months) as the primary inclusion criterion and suspected coronary artery disease underwent a customized multidetector-row CT protocol with myocardial perfusion evaluation at rest and during stress and coronary CT angiography (CTA). Multidetector-row computed tomography was performed in a 64-slice scanner with dipyridamole stress perfusion acquisition before a second perfusion/CT angiographic acquisition at rest. Independent blinded observers performed analysis of images from CTP, CTA, and CCA. All 36 patients completed the CT protocol with no adverse events (mean radiation dose 14.7 +/- 3.0 mSv) and with interpretable scans. CTP results were positive in 27 of 36 patients (75%). From the 9 (25%) disagreements, 6 patients had normal coronary arteries and 2 had no significant stenosis (8 false-positive results with SPECT, 22%). The remaining patient had an occluded artery with collateral flow confirmed by conventional coronary angiogram. Good agreement was demonstrated between CTP and SPECT on a per-patient analysis (kappa 0.53). In 26 patients using CCA as reference, sensitivity, specificity, and positive and negative predictive values were 88.0%, 79.3%, 66.7%, and 93.3% for CTP and 68.8, 76.1%, 66.7%, and 77.8%, for SPECT, respectively (p = NS). In conclusion, dipyridamole CT myocardial perfusion at rest and during stress is feasible and results are similar to single-photon emission CT scintigraphy. The anatomical-perfusion information provided by this combined CT protocol may allow identification of false-positive results by SPECT. (C) 2010 Elsevier Inc. All rights reserved. (Am J Cardiol 2010;106:310-315)
Resumo:
Background. Cardiac risk assessment in cancer patients has not extensively been studied. We evaluated the role of stress myocardial perfusion imaging (MPI) in predicting cardiovascular outcomes in cancer patients undergoing non-cardiac surgery. ^ Methods. A retrospective chart review was performed on 507 patients who had a MPI from 01/2002 - 03/2003 and underwent non-cardiac surgery. Median follow-up duration was 1.5 years. Cox proportional hazard model was used to determine the time-to-first event. End points included total cardiac events (cardiac death, myocardial infarction (MI) and coronary revascularization), cardiac death, and all cause mortality. ^ Results. Of all 507 MPI studies 146 (29%) were abnormal. There were significant differences in risk factors between normal and abnormal MPI groups. Mean age was 66±11 years, with 60% males and a median follow-up duration of 1.8 years (25th quartile=0.8 years, 75th quartile=2.2 years). The majority of patients had an adenosine stress study (53%), with fewer exercise (28%) and dobutamine stress (16%) studies. In the total group there were 39 total cardiac events, 31 cardiac deaths, and 223 all cause mortality events during the study. Univariate predictors of total cardiac events included CAD (p=0.005), previous MI (p=0.005), use of beta blockers (p=0.002), and not receiving chemotherapy (p=0.012). Similarly, the univariate predictors of cardiac death included previous MI (p=0.019) and use of beta blockers (p=0.003). In the multivariate model for total cardiac events, age at surgery (HR 1.04, p=0.030), use of beta blockers (HR 2.46; p=0.011), dobutamine MPI (HR 3.08; p=0.018) and low EF (HR 0.97; p=0.02) were significant predictors of worse outcomes. In the multivariate model for predictors of cardiac death, beta blocker use (HR=2.74; p=0.017) and low EF (HR=0.95; p<0.003) were predictors of cardiac death. The only univariate MPI predictor of total cardiac events was scar severity (p=0.005). While MPI predictors of cardiac death were scar severity (p= 0.001) and ischemia severity (p=0.02). ^ Conclusions. Stress MPI is a useful tool in predicting long term outcomes in cancer patients undergoing surgery. Ejection fraction and severity of myocardial scar are important factors determining long term outcomes in this group.^
Resumo:
OBJECTIVE. Coronary MDCT angiography has been shown to be an accurate noninvasive tool for the diagnosis of obstructive coronary artery disease (CAD). Its sensitivity and negative predictive value for diagnosing percentage of stenosis are unsurpassed compared with those of other noninvasive testing methods. However, in its current form, it provides no information regarding the physiologic impact of CAD and is a poor predictor of myocardial ischemia. CORE320 is a multicenter multinational diagnostic study with the primary objective to evaluate the diagnostic accuracy of 320-MDCT for detecting coronary artery luminal stenosis and corresponding myocardial perfusion deficits in patients with suspected CAD compared with the reference standard of conventional coronary angiography and SPECT myocardial perfusion imaging. CONCLUSION. We aim to describe the CT acquisition, reconstruction, and analysis methods of the CORE320 study.
Resumo:
Introduction: Obstructive sleep apnea (OSA) is associated with an increased risk of cardiovascular diseases. Endothelial dysfunction is believed to be one of the pathophysiological mechanism underlying this association. Our aim was to compare endothelial dependent coronary vasoreactivity in obstructive sleep apnea (OSA) patients and controls by quantifying myocardial blood flow (MBF) response to cold pressure testing (CPT) with 82Rb cardiac PET/CT. Methods: Twenty-four OSA patients (2W/22M, mean age 58 yo, mean BMI 28.6 kg/m2) with an apnea-hypopnea index (AHI) >30/h and 9 healthy volunteers (AHI <10/h) underwent a full night sleep recording (PSG) and a dynamic 82 Rb cardiac PET/CT scan at rest, during CPT and adenosine stress. In OSA patients the same measurements (PSG and PET/CT) were respeated 6 weeks after initiating continuous positive airway pressure (autoCPAP) treatment. To reflect differences in baseline cardiac work, values were normalized according to ratepressure product (RPP). Results: At baseline, untreated OSA patients had a mean AHI of 48.8/h and showed a lower MBF response to CPT than controls (1.1 ± 0.2 mL/min/g vs. 1.3 ± 0.4 mL/min/g, P = 0.048). When treated with CPAP, CPT-MBF was not different between controls and well-treated OSA patients (1.2 ± 0.3 mL/min/g vs 1.3 ± 0.4 mL/min/g, P = 0.68), but it was significantly lower for insufficiently treated patients (n = 10) with a residual AHI >10/h (0.9 ± 0.2 mL/min/g vs 1.3 ± 0.4 mL/min/g, P = 0.03). There was also a trend toward a difference in CPT-MBF between insufficiently and well-treated OSA patients (1.2 ± 0.3 mL/min/g vs 0.9 ± 0.2 mL/min/g, P = 0.15). Conclusion: Untreated OSA patients have an impaired coronary endothelial function as measured by MBF response to CPT compared to control subjects. This difference disappears after 6 weeks of autoCPAP therapy but only in OSA patients showing a good response to CPAP (AHI <10/h). Further studies are needed to determine by which mechanism OSA and CPAP treatment influence coronary vasoreactivity.
Resumo:
Rb-82cardiac PET has been used to non-invasively assess myocardial blood flow (MBF)and myocardial flow reserve (MFR). The impact of MBF and MFR for predictingmajor adverse cardiovascular events (MACE) has not been investigated in aprospective study, which was our aim. MATERIAL AND METHODS: In total, 280patients (65±10y, 36% women) with known or suspected CAD were prospectivelyenrolled. They all underwent both a rest and adenosine stress Rb-82 cardiacPET/CT. Dynamic acquisitions were processed with the FlowQuant 2.1.3 softwareand analyzed semi-quantitatively (SSS, SDS) and quantitatively (MBF, MFR) andreported using the 17-segment AHA model. Patients were stratified based on SDS,stress MBF and MFR and allocated into tertiles. For each group, annualizedevent rates were computed by dividing the number of annualized MACE (cardiacdeath, myocardial infarction, revascularisation or hospitalisation forcardiac-related event) by the sum of individual follow-up periods in years.Outcome were analysed for each group using Kaplan-Meier event-free survivalcurves and compared using the log-rank test. Multivariate analysis wasperformed in a stepwise fashion using Cox proportional hazards regressionmodels (p<0.05 for model inclusion). RESULTS: In a median follow-up of 256days (range 168-440d), 44 MACE were observed. Ischemia (SDS≥2) was observed in95 patients who had higher annualized MACE rate as compared to those without(55% vs. 9.8%, p<0.0001). The group with the lowest MFR tertile (MFR<1.76)had higher MACE rate than the two highest tertiles (51% vs. 9% and 14%,p<0.0001). Similarly, the group with the lowest stress MBF tertile(MBF<1.78mL/min/g) had the highest annualized MACE rate (41% vs. 26% and 6%,p=0.0002). On multivariate analysis, the addition of MFR or stress MBF to SDSsignificantly increased the global χ2 (from 56 to 60, p=0.04; and from56 to 63, p=0.01). The best prognostic power was obtained in a model combiningSDS (p<0.001) and stress MBF (p=0.01). Interestingly, the integration ofstress MBF enhanced risk stratification even in absence of ischemia.CONCLUSIONS: Quantification of MBF or MFR in Rb-82 cardiac PET/CT providesindependent and incremental prognostic information over semi-quantitativeassessment with SDS and is of value for risk stratification.
Resumo:
PURPOSE: Cardiovascular magnetic resonance (CMR) has become a robust and important diagnostic imaging modality in cardiovascular medicine. However,insufficient image quality may compromise its diagnostic accuracy. No standardized criteria are available to assess the quality of CMR studies. We aimed todescribe and validate standardized criteria to evaluate the quality of CMR studies including: a) cine steady-state free precession, b) delayed gadoliniumenhancement, and c) adenosine stress first-pass perfusion. These criteria will serve for the assessment of the image quality in the setting of the Euro-CMR registry.METHOD AND MATERIALS: First, a total of 45 quality criteria were defined (35 qualitative criteria with a score from 0-3, and 10 quantitative criteria). Thequalitative score ranged from 0 to 105. The lower the qualitative score, the better the quality. The quantitative criteria were based on the absolute signal intensity (delayed enhancement) and on the signal increase (perfusion) of the anterior/posterior left ventricular wall after gadolinium injection. These criteria were then applied in 30 patients scanned with a 1.5T system and in 15 patients scanned with a 3.0T system. The examinations were jointly interpreted by 3 CMR experts and 1 study nurse. In these 45 patients the correlation between the results of the quality assessment obtained by the different readers was calculated.RESULTS: On the 1.5T machine, the mean quality score was 3.5. The mean difference between each pair of observers was 0.2 (5.7%) with a mean standarddeviation of 1.4. On the 3.0T machine, the mean quality score was 4.4. The mean difference between each pair of onservers was 0.3 (6.4%) with a meanstandard deviation of 1.6. The quantitative quality assessments between observers were well correlated for the 1.5T machine: R was between 0.78 and 0.99 (pCONCLUSION: The described criteria for the assessment of CMR image quality are robust and have a low inter-observer variability, especially on 1.5T systems.CLINICAL RELEVANCE/APPLICATION: These criteria will allow the standardization of CMR examinations. They will help to improve the overall quality ofexaminations and the comparison between clinical studies.
Resumo:
Purpose: Recent studies showed that pericardial fat was independently correlated with the development of coronary artery disease (CAD). The mechanism remains unclear. We aimed at assessing a possible relationship between pericardial fat volume and endothelium-dependent coronary vasomotion, a surrogate of future cardiovascular events.Methods: Fifty healthy volunteers without known CAD or cardiovascular risk factors (CRF) were enrolled. They all underwent a dynamic Rb- 82 cardiac PET/CT to quantify myocardial blood flow (MBF) at rest, during MBF response to cold pressure test (CPT-MBF) and adenosine stress. Pericardial fat volume (PFV) was measured using a 3D volumetric CT method and common biological CRF (glucose and insulin levels, HOMA-IR, cholesterol, triglyceride, hs-CRP). Relationships between MBF response to CPT, PFV and other CRF were assessed using non-parametric Spearman correlation and multivariate regression analysis of variables with significant correlation on univariate analysis (Stata 11.0).Results: All of the 50 participants had normal MBF response to adenosine (2.7±0.6 mL/min/g; 95%CI: 2.6−2.9) and myocardial flow reserve (2.8±0.8; 95%CI: 2.6−3.0) excluding underlying CAD. Simple regression analysis revealed a significant correlation between absolute CPTMBF and triglyceride level (rho = −0.32, p = 0.024) fasting blood insulin (rho = −0.43, p = 0.0024), HOMA-IR (rho = −0.39, p = 0.007) and PFV (rho = −0.52, p = 0.0001). MBF response to adenosine was only correlated with PFV (rho = −0.32, p = 0.026). On multivariate regression analysis PFV emerged as the only significant predictor of MBF response to CPT (p = 0.002).Conclusion: PFV is significantly correlated with endothelium-dependent coronary vasomotion. High PF burden might negatively influence MBF response to CPT, as well as to adenosine stress, even in persons with normal hyperemic myocardial perfusion imaging, suggesting a link between PF and future cardiovascular events. While outside-to-inside adipokines secretion through the arterial wall has been described, our results might suggest an effect upon NO-dependent and -independent vasodilatation. Further studies are needed to elucidate this mechanism.
Resumo:
PURPOSE: Thoracic fat has been associated with an increased risk of coronary artery disease (CAD). As endothelium-dependent vasoreactivity is a surrogate of cardiovascular events and is impaired early in atherosclerosis, we aimed at assessing the possible relationship between thoracic fat volume (TFV) and endothelium-dependent coronary vasomotion. METHODS: Fifty healthy volunteers without known CAD or major cardiovascular risk factors (CRFs) prospectively underwent a (82)Rb cardiac PET/CT to quantify myocardial blood flow (MBF) at rest, and MBF response to cold pressor testing (CPT-MBF) and adenosine (i.e., stress-MBF). TFV was measured by a 2D volumetric CT method and common laboratory blood tests (glucose and insulin levels, HOMA-IR, cholesterol, triglyceride, hsCRP) were performed. Relationships between CPT-MBF, TFV and other CRFs were assessed using non-parametric Spearman rank correlation testing and multivariate linear regression analysis. RESULTS: All of the 50 participants (58 ± 10y) had normal stress-MBF (2.7 ± 0.6 mL/min/g; 95 % CI: 2.6-2.9) and myocardial flow reserve (2.8 ± 0.8; 95 % CI: 2.6-3.0) excluding underlying CAD. Univariate analysis revealed a significant inverse relation between absolute CPT-MBF and sex (ρ = -0.47, p = 0.0006), triglyceride (ρ = -0.32, p = 0.024) and insulin levels (ρ = -0.43, p = 0.0024), HOMA-IR (ρ = -0.39, p = 0.007), BMI (ρ = -0.51, p = 0.0002) and TFV (ρ = -0.52, p = 0.0001). MBF response to adenosine was also correlated with TFV (ρ = -0.32, p = 0.026). On multivariate analysis, TFV emerged as the only significant predictor of MBF response to CPT (p = 0.014). CONCLUSIONS: TFV is significantly correlated with endothelium-dependent and -independent coronary vasomotion. High TF burden might negatively influence MBF response to CPT and to adenosine stress, even in persons without CAD, suggesting a link between thoracic fat and future cardiovascular events.
Resumo:
PURPOSE: Obstructive sleep apnea syndrome (OSA) increases the risk of cardiovascular disease. We aimed at evaluating the effect of continuous positive airway pressure (CPAP) treatment on coronary endothelium-dependent vasoreactivity in OSA patients by quantifying myocardial blood flow (MBF) response to cold pressure testing (CPT). METHODS: In the morning after polysomnography (PSG), all participants underwent a dynamic (82)Rb cardiac positron emitting tomography/computed tomography (PET/CT) scan at rest, during CPT and adenosine stress. PSG and PET/CT were repeated at least 6 weeks after initiating CPAP treatment. OSA patients were compared to controls and according to response to CPAP. Patients' characteristics and PSG parameters were used to determine predictors of CPT-MBF. RESULTS: Thirty-two untreated OSA patients (age 58 ± 13 years, 27 men) and 9 controls (age 62 ± 5 years, 4 men) were enrolled. At baseline, compared to controls (apnea-hypopnea index (AHI) = 5.3 ± 2.6/h), untreated OSA patients (AHI = 48.6 ± 19.7/h) tend to have a lower CPT-MBF (1.1 ± 0.2 mL/min/g vs. 1.3 ± 0.4 mL/min/g, p = 0.09). After initiating CPAP, CPT-MBF was not different between well-treated patients (AHI <10/h) and controls (1.3 ± 0.3 mL/min/g vs. 1.3 ± 0.4 mL/min/g, p = 0.83), but it was lower for insufficiently treated patients (AHI ≥10/h) (0.9 ± 0.2 mL/min/g vs. 1.3 ± 0.4 mL/min/g, p = 0.0045). CPT-MBF was also higher in well-treated than in insufficiently treated patients (1.3 ± 0.3 mL/min/g vs. 0.9 ± 0.2 mL/min/g, p = 0.001). Mean nocturnal oxygen saturation (β = -0.55, p = 0.02) and BMI (β = -0.58, p = 0.02) were independent predictors of CPT-MBF in OSA patients. CONCLUSIONS: Coronary endothelial vasoreactivity is impaired in insufficiently treated OSA patients compared to well-treated patients and controls, confirming the need for CPAP optimization.
Resumo:
Myocardial perfusion imaging with SPECT (SPECT-MPI) and 64-slice CT angiography (CTA) are both established techniques for the noninvasive evaluation of coronary artery disease (CAD). Three-dimensional (3D) SPECT/CT image fusion may offer an incremental diagnostic value by integrating both sets of information. We report our first clinical experiences with fused 3D SPECT/CT in CAD patients. METHODS: Thirty-eight consecutive patients with at least 1 perfusion defect on SPECT-MPI (1-d adenosine stress/rest SPECT with (99m)Tc-tetrofosmin) and 64-slice CTA were included. 3D volume-rendered fused SPECT/CT images were generated and compared with the findings from the side-by-side analysis with regard to coronary lesion interpretation by assigning the perfusion defects to their corresponding coronary lesion. RESULTS: The fused SPECT/CT images added information on pathophysiologic lesion severity in 27 coronary stenoses (22%) of 12 patients (29%) (P<0.001). Among 40 equivocal lesions on side-by-side analysis, the fused interpretation confirmed hemodynamic significance in 14 lesions and excluded functional relevance in 10 lesions. In 3 lesions, assignment of perfusion defect and coronary lesion appeared to be reliable on side-by-side analysis but proved to be inaccurate on fused interpretation. Added diagnostic information by SPECT/CT was more commonly found in patients with stenoses of small vessels (P=0.004) and involvement of diagonal branches (P=0.01). CONCLUSION: In addition to being intuitively convincing, 3D SPECT/CT fusion images in CAD may provide added diagnostic information on the functional relevance of coronary artery lesions.
Resumo:
PURPOSE: To prospectively determine the accuracy of 64-section computed tomographic (CT) angiography for the depiction of coronary artery disease (CAD) that induces perfusion defects at myocardial perfusion imaging with single photon emission computed tomography (SPECT), by using myocardial perfusion imaging as the reference standard. MATERIALS AND METHODS: All patients gave written informed consent after the study details, including radiation exposure, were explained. The study protocol was approved by the local institutional review board. In patients referred for elective conventional coronary angiography, an additional 64-section CT angiography study and a myocardial perfusion imaging study (1-day adenosine stress-rest protocol) with technetium 99m-tetrofosmin SPECT were performed before conventional angiography. Coronary artery diameter narrowing of 50% or greater at CT angiography was defined as stenosis and was compared with the myocardial perfusion imaging findings. Quantitative coronary angiography served as a reference standard for CT angiography. RESULTS: A total of 1093 coronary segments in 310 coronary arteries in 78 patients (mean age, 65 years +/- 9 [standard deviation]; 35 women) were analyzed. CT angiography revealed stenoses in 137 segments (13%) corresponding to 91 arteries (29%) in 46 patients (59%). SPECT revealed 14 reversible, 13 fixed, and six partially reversible defects in 31 patients (40%). Sensitivity, specificity, and negative and positive predictive values, respectively, of CT angiography in the detection of reversible myocardial perfusion imaging defects were 95%, 53%, 94%, and 58% on a per-patient basis and 95%, 75%, 96%, and 72% on a per-artery basis. Agreement between CT and conventional angiography was very good (96% and kappa = 0.92 for patient-based analysis, 93% and kappa = 0.84 for vessel-based analysis). CONCLUSION: Sixty-four-section CT angiography can help rule out hemodynamically relevant CAD in patients with intermediate to high pretest likelihood, although an abnormal CT angiography study is a poor predictor of ischemia.
Resumo:
BACKGROUND: Several analysis software packages for myocardial blood flow (MBF) quantification from cardiac PET studies exist, but they have not been compared using concordance analysis, which can characterize precision and bias separately. Reproducible measurements are needed for quantification to fully develop its clinical potential. METHODS: Fifty-one patients underwent dynamic Rb-82 PET at rest and during adenosine stress. Data were processed with PMOD and FlowQuant (Lortie model). MBF and myocardial flow reserve (MFR) polar maps were quantified and analyzed using a 17-segment model. Comparisons used Pearson's correlation ρ (measuring precision), Bland and Altman limit-of-agreement and Lin's concordance correlation ρc = ρ·C b (C b measuring systematic bias). RESULTS: Lin's concordance and Pearson's correlation values were very similar, suggesting no systematic bias between software packages with an excellent precision ρ for MBF (ρ = 0.97, ρc = 0.96, C b = 0.99) and good precision for MFR (ρ = 0.83, ρc = 0.76, C b = 0.92). On a per-segment basis, no mean bias was observed on Bland-Altman plots, although PMOD provided slightly higher values than FlowQuant at higher MBF and MFR values (P < .0001). CONCLUSIONS: Concordance between software packages was excellent for MBF and MFR, despite higher values by PMOD at higher MBF values. Both software packages can be used interchangeably for quantification in daily practice of Rb-82 cardiac PET.
Resumo:
Uncoupling protein one (UCP1) is a mitochondrial inner membrane protein capable of uncoupling the electrochemical gradient from adenosine-5'-triphosphate (ATP) synthesis, dissipating energy as heat. UCP1 plays a central role in nonshivering thermogenesis in the brown adipose tissue (BAT) of hibernating animals and small rodents. A UCP1 ortholog also occurs in plants, and aside from its role in uncoupling respiration from ATP synthesis, thereby wasting energy, it plays a beneficial role in the plant response to several abiotic stresses, possibly by decreasing the production of reactive oxygen species (ROS) and regulating cellular redox homeostasis. However, the molecular mechanisms by which UCP1 is associated with stress tolerance remain unknown. Here, we report that the overexpression of UCP1 increases mitochondrial biogenesis, increases the uncoupled respiration of isolated mitochondria, and decreases cellular ATP concentration. We observed that the overexpression of UCP1 alters mitochondrial bioenergetics and modulates mitochondrial-nuclear communication, inducing the upregulation of hundreds of nuclear- and mitochondrial-encoded mitochondrial proteins. Electron microscopy analysis showed that these metabolic changes were associated with alterations in mitochondrial number, area and morphology. Surprisingly, UCP1 overexpression also induces the upregulation of hundreds of stress-responsive genes, including some involved in the antioxidant defense system, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione-S-transferase (GST). As a consequence of the increased UCP1 activity and increased expression of oxidative stress-responsive genes, the UCP1-overexpressing plants showed reduced ROS accumulation. These beneficial metabolic effects may be responsible for the better performance of UCP1-overexpressing lines in low pH, high salt, high osmolarity, low temperature, and oxidative stress conditions. Overexpression of UCP1 in the mitochondrial inner membrane induced increased uncoupling respiration, decreased ROS accumulation under abiotic stresses, and diminished cellular ATP content. These events may have triggered the expression of mitochondrial and stress-responsive genes in a coordinated manner. Because these metabolic alterations did not impair plant growth and development, UCP1 overexpression can potentially be used to create crops better adapted to abiotic stress conditions.
Resumo:
The key role of intrarenal adenosine in mediating the hypoxemic acute renal insufficiency in newborn rabbits has been well demonstrated using the nonspecific adenosine antagonist theophylline. The present study was designed to define the role of adenosine A1 receptors during systemic hypoxemia by using the specific A1-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). Renal function parameters were assessed in 31 anesthetized and mechanically ventilated newborn rabbits. In normoxia, DPCPX infusion induced a significant increase in diuresis (+44%) and GFR (+19%), despite a significant decrease in renal blood flow (RBF) (-22%) and an increase in renal vascular resistance (RVR) (+37%). In hypoxemic conditions, diuresis (-19%), GFR (-26%), and RBF (-35%) were decreased, whereas RVR increased (+33%). DPCPX administration hindered the hypoxemia-induced decrease in GFR and diuresis. However, RBF was still significantly decreased (-27%), whereas RVR increased (+22%). In all groups, the filtration fraction increased significantly. The overall results support the hypothesis that, in physiologic conditions, intrarenal adenosine plays a key role in regulating glomerular filtration in the neonatal period through preferential A1-mediated afferent vasoconstriction. During a hypoxemic stress, the A1-specific antagonist DPCPX only partially prevented the hypoxemia-induced changes, as illustrated by the elevated RVR and drop in RBF. These findings imply that the contribution of intrarenal adenosine to the acute adverse effects of hypoxemia might not be solely mediated via the A1 receptor.
Resumo:
ABSTRACT: BACKGROUND: Neuroprotective and neurotrophic properties of leukemia inhibitory factor (LIF) have been widely reported. In the central nervous system (CNS), astrocytes are the major source for LIF, expression of which is enhanced following disturbances leading to neuronal damage. How astrocytic LIF expression is regulated, however, has remained an unanswered question. Since neuronal stress is associated with production of extracellular adenosine, we investigated whether LIF expression in astrocytes was mediated through adenosine receptor signaling. METHODS: Mouse cortical neuronal and astrocyte cultures from wild-type and adenosine A2B receptor knock-out animals, as well as adenosine receptor agonists/antagonists and various enzymatic inhibitors, were used to study LIF expression and release in astrocytes. When needed, a one-way analysis of variance (ANOVA) followed by Bonferroni post-hoc test was used for statistical analysis. RESULTS: We show here that glutamate-stressed cortical neurons induce LIF expression through activation of adenosine A2B receptor subtype in cultured astrocytes and require signaling of protein kinase C (PKC), mitogen-activated protein kinases (MAPKs: p38 and ERK1/2), and the nuclear transcription factor (NF)-κB. Moreover, LIF concentration in the supernatant in response to 5'-N-ethylcarboxamide (NECA) stimulation was directly correlated to de novo protein synthesis, suggesting that LIF release did not occur through a regulated release pathway. Immunocytochemistry experiments show that LIF-containing vesicles co-localize with clathrin and Rab11, but not with pHogrin, Chromogranin (Cg)A and CgB, suggesting that LIF might be secreted through recycling endosomes. We further show that pre-treatment with supernatants from NECA-treated astrocytes increased survival of cultured cortical neurons against glutamate, which was absent when the supernatants were pre-treated with an anti-LIF neutralizing antibody. CONCLUSIONS: Adenosine from glutamate-stressed neurons induces rapid LIF release in astrocytes. This rapid release of LIF promotes the survival of cortical neurons against excitotoxicity.