458 resultados para ADENINE-DINUCLEOTIDE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract APO866 is an inhibitor of nicotinamide adenine dinucleotide (NAD) biosynthesis that exhibits potent anti-lymphoma activity. Rituximab (RTX), an anti-CD20 antibody, kills lymphoma cells by direct apoptosis and antibody- and complement-dependent cell-mediated cytotoxicities, and has clinical efficacy in non-Hodgkin cell lymphomas. In the present study, we evaluated whether RTX could potentiate APO866-induced human B-lymphoma cell death and shed light on death-mediated mechanisms associated with this drug combination. We found that RTX significantly increases APO866-induced death in lymphoma cells from patients and lines. Mechanisms include enhancement of autophagy-mediated cell death, activation of caspase 3 and exacerbation of mitochondrial depolarization, but not increase of reactive oxygen species (ROS) production, when compared with those induced by each drug alone. In vivo, combined administration of APO866 with RTX in a laboratory model of human aggressive lymphoma significantly decreased tumor burden and prolonged survival over single-agent treatment. Our study demonstrates that the combination of RTX and APO866 optimizes B-cell lymphoma apoptosis and therapeutic efficacy over both compounds administered separately.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L-alpha-glycerophosphate oxidase (GlpO) plays a central role in virulence of Mycoplasma mycoides subsp. mycoides SC, a severe bacterial pathogen causing contagious bovine pleuropneumonia (CBPP). It is involved in production and translocation of toxic H(2)O(2) into the host cell, causing inflammation and cell death. The binding site on GlpO for the cofactor flavin adenine dinucleotide (FAD) has been identified as Gly(12)-Gly(13)-Gly(14)-Ile(15)-Ile(16)-Gly(17). Recombinant GlpO lacking these six amino acids (GlpODeltaFAD) was unable to bind FAD and was also devoid of glycerophosphate oxidase activity, in contrast to non-modified recombinant GlpO that binds FAD and is enzymatically active. Polyclonal monospecific antibodies directed against GlpODeltaFAD, similarly to anti-GlpO antibodies, neutralised H(2)O(2) production of M. mycoides subsp. mycoides SC grown in the presence of glycerol, as well as cytotoxicity towards embryonic calf nasal epithelial (ECaNEp) cells. The FAD-binding site of GlpO is therefore suggested as a valuable target site for the future construction of deletion mutants to yield attenuated live vaccines of M. mycoides subsp. mycoides SC necessary to efficiently combat CBPP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Higher plants share with animals a responsiveness to the Ca2+ mobilizing agents inositol 1,4,5-trisphosphate (InsP3) and cyclic ADP-ribose (cADPR). In this study, by using a vesicular 45Ca2+ flux assay, we demonstrate that microsomal vesicles from red beet and cauliflower also respond to nicotinic acid adenine dinucleotide phosphate (NAADP), a Ca2+-releasing molecule recently described in marine invertebrates. NAADP potently mobilizes Ca2+ with a K1/2 = 96 nM from microsomes of nonvacuolar origin in red beet. Analysis of sucrose gradient-separated cauliflower microsomes revealed that the NAADP-sensitive Ca2+ pool was derived from the endoplasmic reticulum. This exclusively nonvacuolar location of the NAADP-sensitive Ca2+ pathway distinguishes it from the InsP3- and cADPR-gated pathways. Desensitization experiments revealed that homogenates derived from cauliflower tissue contained low levels of NAADP (125 pmol/mg) and were competent in NAADP synthesis when provided with the substrates NADP and nicotinic acid. NAADP-induced Ca2+ release is insensitive to heparin and 8-NH2-cADPR, specific inhibitors of the InsP3- and cADPR-controlled mechanisms, respectively. However, NAADP-induced Ca2+ release could be blocked by pretreatment with a subthreshold dose of NAADP, as previously observed in sea urchin eggs. Furthermore, the NAADP-gated Ca2+ release pathway is independent of cytosolic free Ca2+ and therefore incapable of operating Ca2+-induced Ca2+ release. In contrast to the sea urchin system, the NAADP-gated Ca2+ release pathway in plants is not blocked by L-type channel antagonists. The existence of multiple Ca2+ mobilization pathways and Ca2+ release sites might contribute to the generation of stimulus-specific Ca2+ signals in plant cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The catalytic, or third domain of Pseudomonas exotoxin A (PEIII) catalyzes the transfer of ADP ribose from nicotinamide adenine dinucleotide (NAD) to elongation factor-2 in eukaryotic cells, inhibiting protein synthesis. We have determined the structure of PEIII crystallized in the presence of NAD to define the site of binding and mechanism of activation. However, NAD undergoes a slow hydrolysis and the crystal structure revealed only the hydrolysis products, AMP and nicotinamide, bound to the enzyme. To better define the site of NAD binding, we have now crystallized PEIII in the presence of a less hydrolyzable NAD analog, beta-methylene-thiazole-4-carboxamide adenine dinucleotide (beta-TAD), and refined the complex structure at 2.3 angstroms resolution. There are two independent molecules of PEIII in the crystal, and the conformations of beta-TAD show some differences in the two binding sites. The beta-TAD attached to molecule 2 appears to have been hydrolyzed between the pyrophosphate and the nicotinamide ribose. However molecule 1 binds to an intact beta-TAD and has no crystal packing contacts in the vicinity of the binding site, so that the observed conformation and interaction with the PEIII most likely resembles that of NAD bound to PEIII in solution. We have compared this complex with the catalytic domains of diphtheria toxin, heat labile enterotoxin, and pertussis toxin, all three of which it closely resembles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of three osmolytes, trimethylamine N-oxide (TMAO), betaine and proline, on the interaction of muscle glycogen phosphorylase b with allosteric inhibitor FAD has been examined. In the absence of osmolyte, the interaction is described by a single intrinsic dissociation constant (17.8 muM) for two equivalent and independent binding sites on the dimeric enzyme. However, the addition of osmolytes gives rise to sigmoidal dependencies of fractional enzyme-site saturation upon free inhibitor concentration. The source of this cooperativity has been shown by difference sedimentation velocity to be an osmolyte-mediated isomerization of phosphorylase b to a smaller dimeric state with decreased affinity for FAD. These results thus have substantiated a previous inference that the tendency for osmolyte-enhanced self-association of dimeric glycogen phosphorylase b in the presence of AMP was being countered by the corresponding effect of molecular crowding on an isomerization of dimer to a smaller, nonassociating state. (C) 2004 Elsevier Ltd. Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Funding: The Scottish Government's Rural and Environment Science and Analytical Services Division.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AIM: To evaluate effects of pre- and postnatal protein deprivation and postnatal recovery on the myenteric plexus of the rat esophagus. METHODS: Three groups of young Wistar rats (aged 42 d) were studied: normal-fed (N42), protein-deprived (D42), and protein-recovered (R42). The myenteric neurons of their esophagi were evaluated by histochemical reactions for nicotinamide adenine dinucleotide (NADH), nitrergic neurons (NADPH)-diaphorase and acetylcholinesterase (AChE), immunohistochemical reaction for vasoactive intestinal polypeptide (VIP), and ultrastructural analysis by transmission electron microscopy. RESULTS: The cytoplasms of large and medium neurons from the N42 and R42 groups were intensely reactive for NADH. Only a few large neurons from the D42 group exhibited this aspect. NADPH detected in the D42 group exhibited low reactivity. The AChE reactivity was diffuse in neurons from the D42 and R42 groups. The density of large and small varicosities detected by immunohistochemical staining of VIP was low in ganglia from the D42 group. In many neurons from the D42 group, the double membrane of the nuclear envelope and the perinuclear cisterna were not detectable. NADH and NADPH histochemistry revealed no group differences in the profile of nerve cell perikarya (ranging from 200 to 400 mu m(2)). CONCLUSION: Protein deprivation causes a delay in neuronal maturation but postnatal recovery can almost completely restore the normal morphology of myenteric neurons. (C) 2010 Baishideng. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context: 21-hydroxylase deficiency (21OHD) is a common genetic disorder caused by mutations in the CYP21A2 gene, which encodes the adrenal 21-hydroxylase, microsomal P450c21. CYP21A2 gene mutations generally correlate well with impaired P450c21 enzymatic activity and the clinical findings in 21OHD, but occasional discrepancies between genotype and phenotype suggest the effects of modifier genes. Mutations in P450 oxidoreductase (POR), the protein that transfers electrons from reduced nicotinamide adenine dinucleotide phosphate to all microsomal P450s, can ameliorate the 21OHD phenotype and, therefore, could be a modifier gene. Objectives: We sought to identify POR variants in patients with 21OHD having discordant phenotype and genotype, and to evaluate their effect on 21-hydroxylase activity. Patients and Methods: We determined the CYP21A2 genotypes of 313 Brazilian patients with 21OHD and correlated the genotype and phenotype. The POR gene was sequenced in 17 patients with discordant genotype and phenotype. Wild-type and A503V POR, and P450c21 were expressed in bacteria and reconstituted in vitro. Activities were assayed by conversion of [C-14] progesterone to deoxycorticosterone and [H-3]17-hydroxyprogesterone to 11-deoxycortisol, and assessed by thin layer chromatography and phosphorimaging. Results: The A503V POR variant was found in 10 of 30 alleles, the same ratio as in the normal population. There were no significant differences in Michaelis constant, maximum velocity and maximum velocity/Michaelis constant of 21-hydroxylase activity supported by wild-type and A503V POR. Conclusion: The only POR missense polymorphism found in atypical 21OHD patients was A503V. Although A503V reduces P450c17 enzymatic activity, it does not influence P450c21 activity, indicating that POR A503V does not modify the 21OHD phenotype.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experimental and clinical evidence shows that neutrophils play an important role in the mechanism of tissue injury in immune complex diseases through the generation of reactive oxygen species. In this study, we examined the influence of academic psychological stress in post-graduate students on the capacity of their blood neutrophils to release superoxide when stimulated by immune complexes bound to nonphagocytosable surfaces and investigated the modulatory effect of cortisol on this immune function. The tests were performed on the day before the final examination. The state-trait anxiety inventory questionnaire was used to examine whether this stressful event caused emotional distress. In our study, the psychological stress not only increased plasma cortisol concentration, but it also provoked a reduction in superoxide release by neutrophils. This decrease in superoxide release was accompanied by diminished mRNA expression for subunit p47(phox) of the phagocyte superoxide-generating nicotinamide adenine dinucleotide phosphate-oxidase. These inhibitory effects were also observed by in vitro exposure of neutrophils from control volunteers to 10(-7) M hydrocortisone, and could be prevented by the glucocorticoid receptor antagonist RU-486. These results show that in a situation of psychological stress, the increased levels of cortisol could inhibit superoxide release by neutrophils stimulated by IgG immune complexes bound to nonphagocytosable surfaces, which could attenuate the inflammatory state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Enzymes are crucial for the metabolism of macromolecular substrates. In the great majority of cells, most enzymes are constitutive. Nevertheless, inducible enzymes can predominate, determining specialized cell functions. Within this context, histochemistry/immunohistochemistry and biochemistry were used to investigate expression of peroxidase and reduced nicotinamide-adenine dinucleotide phosphate (NADPH)-oxidase, as well as the expression and activity of cathepsin D and acid phosphatase, in trophoblast cells within the endotheliochorial labyrinth and marginal hematoma of the term cat placenta. In the marginal hematoma, elevated Cathepsin D expression and activity was accompanied by erythrophagocytosis. In contrast, acid phosphatase activity was much more intense in the labyrinth, where metabolic exchanges occur. Peroxidase and NAD(P)H-oxidase were predominantly active in trophoblast cells within endosomal vesicles of different placental compartments, indicating that, although reactive oxygen species might participate in endosomal/lysosomal processes, they are not territorially specific or functional markers. These findings highlight differential characteristics of cathepsin D and acid phosphatase activity within each placental compartment, thereby contributing to the comprehension of the territorial role played by the placenta and facilitating future metabolic studies. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first step in the common pathway for the biosynthesis of branched-chain amino acids is catalysed by acetohydroxyacid synthase (AHAS; EC 4.1.3.18). The enzyme is found in plants, fungi and bacteria, and is regulated by controls on transcription and translation, and by allosteric modulation of catalytic activity. It has long been known that the bacterial enzyme is composed of two types of subunit, and a similar arrangement has been found recently for the yeast and plant enzymes. One type of subunit contains the catalytic machinery, whereas the other has a regulatory function. Previously, we have shown [Pang and Duggleby (1999) Biochemistry 38, 5222-5231] that yeast AHAS can be reconstituted from its separately purified subunits. The, reconstituted enzyme is inhibited by valine, and ATP reverses this inhibition. In the present work, we further characterize the structure and the regulatory properties of reconstituted yeast AHAS. High phosphate concentrations are required for reconstitution and it is shown that these conditions are necessary for physical association between the catalytic and regulatory subunits. It is demonstrated by CD spectral changes that ATP binds to the regulatory subunit alone, most probably as MgATP. Neither valine nor MgATP causes dissociation of the regulatory subunit from the catalytic subunit. The specificity of valine inhibition and MgATP activation are examined and it is found that the only effective analogue of either regulator of those tested is the non-hydrolysable ATP mimic, adenosine 5 '-[beta,gamma -imido]triphosphate. The kinetics of regulation are studied in detail and it is shown that the activation by MgATP depends on the valine concentration in a complex manner that is consistent with a proposed quantitative model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work two different procedures to utilize the sol-gel technology were applied to immobilize/encapsulate enzymes and living cells. CO2 has reached levels in the atmosphere that make it a pollutant. New methods to utilize this gas to obtain products of added value can be very important, both from an environmentally point of view and from an economic standpoint. The first goal of this work was to study the first reaction of a sequential, three-step, enzymatic process that carries out the conversion of CO2 to methanol. Of the three oxidoreductases involved, our focus was on formate dehydrogenase (FateDH) that converts CO2 to formate. This reaction requires the presence of the cofactor β-nicotinamide adenine dinucleotide in reduced form (NADH). The cofactor is expensive and unstable. Our experiments were directed towards generating NADH from its oxidized form (NAD+), using glutamate dehydrogenase (GDH). The formation of NADH from NAD+ in aqueous medium was studied with both free and sol-gel entrapped GDH. This reaction was then followed by the conversion of CO2 to formate, catalysed by free or sol-gel entrapped FateDH. The quantification of NADH/NAD+ was made using UV/Vis spectroscopy. Our results showed that it was possible to couple the GDH-catalyzed generation of the cofactor NADH with the FateDH-catalyzed conversion of CO2, as confirmed by the detection of formate in the medium, using High Performance Liquid Chromatography (HPLC). The immobilization of living cells can be advantageous from the standpoint of ease of recovery, reutilization and physical separation from the medium. Also dead cells may not always exhibit enzymatic activities found with living cells. In this work cell encapsulation was performed using Escherichia coli bacteria. To reduce toxicity for living organisms, the sol-gel method was different than for enzymes, and involved the use of aqueous-based precursors. Initial encapsulation experiments and viability tests were carried out with E. coli K12. Our results showed that sol-gel entrapment of the cells was achieved, and that cell viability could be increased with additives, namely betaine that led to greater viability improvement and was selected for further studies. For an approach to “in-cell” Nuclear Magnetic Resonance (NMR) experiments, the expression of the protein ctCBM11 was performed in E. coli BL21. It was possible to obtain an NMR signal from the entrapped cells, a considerable proportion of which remained alive after the NMR experiments. However, it was not possible to obtain a distinctive NMR signal from the target protein to distinguish it from the other proteins in the cell.