982 resultados para ACUTE MOUNTAIN-SICKNESS
Increased cerebral output of free radicals during hypoxia: implications for acute mountain sickness?
Resumo:
Bailey DM, Taudorf S, Berg RMG, Lundby C, McEneny J, Young IS, Evans KA, James PE, Shore A, Hullin DA, McCord JM, Pedersen BK, Moller K. Increased cerebral output of free radicals during hypoxia: implications for acute mountain sickness? Am J Physiol Regul Integr Comp Physiol 297: R1283-R1292, 2009. First published September 2, 2009; doi: 10.1152/ajpregu.00366.2009.-This study examined whether hypoxia causes free radical-mediated disruption of the blood-brain barrier (BBB) and impaired cerebral oxidative metabolism and whether this has any bearing on neurological symptoms ascribed to acute mountain sickness (AMS). Ten men provided internal jugular vein and radial artery blood samples during normoxia and 9-h passive exposure to hypoxia (12.9% O-2). Cerebral blood flow was determined by the Kety-Schmidt technique with net exchange calculated by the Fick principle. AMS and headache were determined with clinically validated questionnaires. Electron paramagnetic resonance spectroscopy and ozone-based chemiluminescence were employed for direct detection of spin-trapped free radicals and nitric oxide metabolites. Neuron-specific enolase (NSE), S100 beta, and 3-nitrotyrosine (3-NT) were determined by ELISA. Hypoxia increased the arterio-jugular venous concentration difference (a-v(D)) and net cerebral output of lipid-derived alkoxyl-alkyl free radicals and lipid hydroperoxides (P
Resumo:
Although a history of previous acute mountain sickness (AMS) is commonly used for providing advice and recommending its prophylaxis during subsequent exposure, the intraindividual reproducibility of AMS during repeated high-altitude exposure has never been examined in a prospective controlled study.
Resumo:
AIM: Acute mountain sickness (AMS) can result in pulmonary and cerebral oedema with overperfusion of microvascular beds, elevated hydrostatic capillary pressure, capillary leakage and consequent oedema as pathogenetic mechanisms. Data on changes in glomerular filtration rate (GFR) at altitudes above 5000 m are very limited. METHODS: Thirty-four healthy mountaineers, who were randomized to two acclimatization protocols, undertook an expedition on Muztagh Ata Mountain (7549 m) in China. Tests were performed at five altitudes: Zurich pre-expedition (PE, 450 m), base camp (BC, 4497 m), Camp 1 (C1, 5533 m), Camp 2 (C2, 6265 m) and Camp 3 (C3, 6865 m). Cystatin C- and creatinine-based (Mayo Clinic quadratic equation) GFR estimates (eGFR) were assessed together with Lake Louise AMS score and other tests. RESULTS: eGFR significantly decreased from PE to BC (P < 0.01). However, when analysing at changes between BC and C3, only cystatin C-based estimates indicated a significant decrease in GFR (P = 0.02). There was a linear decrease in eGFR from PE to C3, with a decrease of approx. 3.1 mL min(-1) 1.73 m(-2) per 1000 m increase in altitude. No differences between eGFR of the two groups with different acclimatization protocols could be observed. There was a significant association between eGFR and haematocrit (P = 0.01), whereas no significant association between eGFR and aldosterone, renin and brain natriuretic peptide could be observed. Finally, higher AMS scores were significantly associated with higher eGFR (P = 0.01). CONCLUSIONS: Renal function declines when ascending from low to high altitude. Cystatin C-based eGFR decreases during ascent in high altitude expedition but increases with AMS scores. For individuals with eGFR <40 mL min(-1) 1.73 m(-2), caution may be necessary when planning trips to high altitude above 4500 m above sea level.
Resumo:
OBJECTIVE: Acute mountain sickness is a frequent and debilitating complication of high-altitude exposure, but there is little information on the prevalence and time course of acute mountain sickness in children and adolescents after rapid ascent by mechanical transportation to 3500 m, an altitude at which major tourist destinations are located throughout the world. METHODS: We performed serial assessments of acute mountain sickness (Lake Louise scores) in 48 healthy nonacclimatized children and adolescents (mean +/- SD age: 13.7 +/- 0.3 years; 20 girls and 28 boys), with no previous high-altitude experience, 6, 18, and 42 hours after arrival at the Jungfraujoch high-altitude research station (3450 m), which was reached through a 2.5-hour train ascent. RESULTS: We found that the overall prevalence of acute mountain sickness during the first 3 days at high altitude was 37.5%. Rates were similar for the 2 genders and decreased progressively during the stay (25% at 6 hours, 21% at 18 hours, and 8% at 42 hours). None of the subjects needed to be evacuated to lower altitude. Five subjects needed symptomatic treatment and responded well. CONCLUSION: After rapid ascent to high altitude, the prevalence of acute mountain sickness in children and adolescents was relatively low; the clinical manifestations were benign and resolved rapidly. These findings suggest that, for the majority of healthy nonacclimatized children and adolescents, travel to 3500 m is safe and pharmacologic prophylaxis for acute mountain sickness is not needed.
Resumo:
Bloch, Konrad E., Alexander J. Turk, Marco Maggiorini, Thomas Hess, Tobias Merz, Martina M. Bosch, Daniel Barthelmes, Urs Hefti, Jacqueline Pichler, Oliver Senn, and Otto D. Schoch. Effect of ascent protocol on acute mountain sickness and success at Muztagh Ata, 7546 m. High Alt. Med. Biol. 10:25-32, 2009.-Data on acclimatization during expedition-style climbing to > 5000 m are scant. We evaluated the hypothesis that minor differences in ascent protocol influence acute mountain sickness (AMS) symptoms and mountaineering success in climbers to Muztagh Ata (7546 m), Western China. We performed a randomized, controlled trial during a high altitude medical research expedition to Muztagh Ata. Thirty-four healthy mountaineers (mean age 45 yr, 7 women) were randomized to follow one of two protocols, ascending within 15 or 19 days to the summit of Muztagh Ata at 7546 m, respectively. The main outcome measures, AMS symptom scores and the number of proceeding climbers, were assessed daily. Mean +/- SD AMS-C scores of 16 climbers randomized to slow ascent were 0.06 +/- 0.18, 0.26 +/- 0.08, 0.41 +/- 0.45, 0.53 +/- 0.77 at camps I (5533 m), II (6265 m), III (6865 m), and the summit (7546 m), respectively. Corresponding values in 18 climbers randomized to fast ascent were significantly higher: 0.17 +/- 0.23, 0.43 +/- 0.75, 0.49 +/- 0.36, and 0.69 +/- 0.54 (p < 0.008, vs. slow ascent in regression analysis accounting for weather-related protocol deviation). Climbers randomized to slow ascent were able to ascend according to the protocol without AMS for significantly more days than climbers randomized to fast ascent (p = 0.04, Kaplan-Meier analysis). More climbers randomized to slow ascent were successful in reaching the highest camp at 6865 m without AMS (odds ratio 9.5; 95% confidence interval 1.02 to 89). In climbers ascending to very high altitudes, differences of a few days in acclimatization have a significant impact on symptom severity, the prevalence of AMS, and mountaineering success. ClinicalTrials.gov Identifier NCT00603122.
Resumo:
Objective The aim of this study was to investigate the associations between alleles of the hypoxia-inducible factor 1A (HIF1A) C1772T polymorphism and several physiological responses to hypoxia, including the hypoxic ventilatory response (HVR), and serum erythropoietin (EPO), arterial oxygen saturation (Sao2), and acute mountain sickness (AMS) responses during 8 hours of exposure to normobaric hypoxia. Methods A total of 76 males participated in the study; 52 participants completed an 8-hour exposure to 12.7% oxygen, during which time Sao2, EPO concentrations, and AMS scores were measured, while 62 individuals took part in an HVR trial (in total 38 individuals completed both protocols). DNA was obtained from leukocytes, and a 346-bp fragment of the HIF1A gene containing the C1772T polymorphism was amplified using polymerase chain reaction. Fragments were sequenced to reveal individual genotypes, and the associations between HIF1A genotype and EPO, Sao2, AMS responses to hypoxia and HVR were examined. Results The magnitude of the hypoxic responses was highly variable between individuals. The increase in participants' EPO responses ranged from 89% to 388% of baseline values following hypoxia, while Sao2 values during the exposure ranged from 71% to 89%. The HVR ranged from −0.04 to +2.18 L · min−1 · Sao2%−1 among participants. No significant differences in EPO, Sao2, AMS, or HVR results were observed between the HIF1A CC genotype and the combined CT/TT genotype group. Conclusion In this study, the HIF1A C1772T polymorphism does not appear to influence EPO, Sao2, or AMS responses during acute hypoxic exposure, or the magnitude of the HVR.
Resumo:
New Findings
What is the central question of this study?Exercise performance is limited during hypoxia by a critical reduction in cerebral and skeletal tissue oxygenation. To what extent an elevation in systemic free radical accumulation contributes to microvascular deoxygenation and the corresponding reduction in maximal aerobic capacity remains unknown.What is the main finding and its importance?We show that altered free radical metabolism is not a limiting factor for exercise performance in hypoxia, providing important insight into the fundamental mechanisms involved in the control of vascular oxygen transport.
Exercise performance in hypoxia may be limited by a critical reduction in cerebral and skeletal tissue oxygenation, although the underlying mechanisms remain unclear. We examined whether increased systemic free radical accumulation during hypoxia would be associated with elevated microvascular deoxygenation and reduced maximal aerobic capacity (). Eleven healthy men were randomly assigned single-blind to an incremental semi-recumbent cycling test to determine in both normoxia (21% O2) and hypoxia (12% O2) separated by a week. Continuous-wave near-infrared spectroscopy was employed to monitor concentration changes in oxy- and deoxyhaemoglobin in the left vastus lateralis muscle and frontal cerebral cortex. Antecubital venous blood samples were obtained at rest and at to determine oxidative (ascorbate radical by electron paramagnetic resonance spectroscopy), nitrosative (nitric oxide metabolites by ozone-based chemiluminescence and 3-nitrotyrosine by enzyme-linked immunosorbent assay) and inflammatory stress biomarkers (soluble intercellular/vascular cell adhesion 1 molecules by enzyme-linked immunosorbent assay). Hypoxia was associated with increased cerebral and muscle tissue deoxygenation and lower (P < 0.05 versus normoxia). Despite an exercise-induced increase in oxidative–nitrosative–inflammatory stress, hypoxia per se did not have an additive effect (P > 0.05 versus normoxia). Consequently, we failed to observe correlations between any metabolic, haemodynamic and cardiorespiratory parameters (P > 0.05). Collectively, these findings suggest that altered free radical metabolism cannot explain the elevated microvascular deoxygenation and corresponding lower in hypoxia. Further research is required to determine whether free radicals when present in excess do indeed contribute to the premature termination of exercise in hypoxia.
Resumo:
Chronic mountain sickness (CMS) is an important public health problem and is characterized by exaggerated hypoxemia, erythrocytosis, and pulmonary hypertension. While pulmonary hypertension is a leading cause of morbidity and mortality in patients with CMS, it is relatively mild and its underlying mechanisms are not known. We speculated that during mild exercise associated with daily activities, pulmonary hypertension in CMS is much more pronounced.