976 resultados para ACTIVITY RHYTHM


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The responses of the field mouse Mus booduga to shifts in schedules of LD cycles were monitored and the results were interpreted with the help of a PRC constructed for the same species. The results reveal that, M. booduga reentrained faster with a lesser number of transients after delay shifts than advance shifts, thus exhibiting “asymmetry effect.” A positive correlation was observed between the number of transients and the number of hours of shift. In most of the shifts, the sign of the transients (negative for delaying transients and positive for advancing transients) coincided with the direction of the shift. Interestingly, 11 and 12 h of advance shifting resulted in delaying transients. An 11-h advance shift can also be interpreted as a 13-h delay. Reentrainment through delaying transients is faster as compared to reentrainment through advancing transients. Thus, this animal might have taken a “shorter route,” as proved by the fact that an 11-h advance shift has evoked delaying transients. But a 13-h advance shift evoked only advancing transients. This prompts us to speculate that there may be a “phase jump” in M. booduga. Further, irrespective of whether L or D has been doubled in a 12-h shift, both evoked only delaying transients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under artificial LD cycles (6, 12, 18 L), the elvers of Japanese eel, Anguilla japonica, showed a 24 h cycle of locomotor activity rhythm being most active at light transitions: the eels' activity rose to a primary peak after lights-off, followed by a quiescent period during which they buried into the shelters or lying motionlessly on sand for most of the time, and then reached a secondary peak before lights-on. Elvers could resynchronize their activity rhythm with a new photo cycle within 4 d. Moreover, their activity level at dark phase significantly increased as the light period was prolonged: higher activity levels during shorter dark period. However, the elvers did not display clearly the existence of a circadian rhythm under constant light or dark conditions. The timing of daily activity rhythm evidenced in the Japanese eels may occur through the action of the LD cycles with a weak participation of an endogenous circadian system. In all the LD cycles, over 99% of the activity occurred in the dark phase, indicating that the eels were always nocturnally active no matter what time of day it might be. Under 12 L conditions, the eels' activity level and the time outside sand were significantly elevated both at light and dark phases as temperature increased from 10 similar to 15 to 20 similar to 25 degrees C. The activity rhythm pattern (i.e., two peaks occurring around light transitions) did not apparently change among temperatures. However, in contrast with the primary activity peaks immediately after lights-off at 20 and 25 degrees C, the timing of the primary peaks at 10 and 15 degrees C showed a latency of a few hours following lights-off, indicating the inhibiting effect of low temperature on the eels' activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The locomotory and feeding activity rhythms of Callinectes ornatus Ordway, 1863 and Callinectes danae Smith, 1869 were examined under laboratory conditions. Light significantly influenced the activity of these organisms. However, activity in both species was affected by the presence of food, independently of photoperiod regime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Glass eels of the temperate anguillid species, Anguilla japonica, clearly showed a nocturnal activity rhythm under laboratory conditions. Light-dark cycle was a determinant factor affecting their photonegative behavior, nocturnal locomotor activity, and feeding behavior. Under natural light conditions, glass eels remained in shelters with little daytime feeding, but came out to forage during darkness. They moved and foraged actively in the following dark, and then their activity gradually declined possibly because of food satiation. They finally buried in the sand or stayed in tubes immediately after the lights came on. Under constant light, glass eels often came out of the shelters to forage in the lights but spent little time moving outside the shelters (e.g. swimming or crawling on the sand). Glass eels took shelter to avoid light and preferred tubes to sand for shelter possibly because tubes were much easier for them to take refuge in than sand. Feeding and locomotor activities of the glass eels were nocturnal and well synchronized. They appeared to depend on olfaction rather than vision to detect and capture prey in darkness. Feeding was the driving force for glass eels to come out of sand under constant light. However, in the dark, some glass eels swam or crept actively on sand even when they were fully fed. The lunar cycles of activity rhythms of glass eels that have been observed in some estuarine areas were not detected under these laboratory conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Circadian rhythms are regarded as essentially ubiquitous features of animal behavior and are thought to confer important adaptive advantages. However, although circadian systems of rodents have been among the most extensively studied, most comparative biology is restricted to a few related species. In this study, the circadian organization of locomotor activity was studied in the subterranean, solitary north Argentinean rodent, Ctenomys knightii. The genus, Ctenomys, commonly known as Tuco-tucos, comprises more than 50 known species over a range that extends from 12S latitude into Patagonia, and includes at least one social species. The genus, therefore, is ideal for comparative and ecological studies of circadian rhythms. Ctenomys knightii is the first of these to be studied for its circadian behavior. All animals were wild caught but adapted quickly to laboratory conditions, with clear and precise activity-rest rhythms in a light-dark (LD) cycle and strongly nocturnal wheel running behavior. In constant dark (DD), the rhythm expression persisted with free-running periods always longer than 24h. Upon reinstatement of the LD cycle, rhythms resynchronized rapidly with large phase advances in 7/8 animals. In constant light (LL), six animals had free-running periods shorter than in DD, and 4/8 showed evidence of splitting. We conclude that under laboratory conditions, in wheel-running cages, this species shows a clear nocturnal rhythmic organization controlled by an endogenous circadian oscillator that is entrained to 24h LD cycles, predominantly by light-induced advances, and shows the same interindividual variable responses to constant light as reported in other non-subterranean species. These data are the first step toward understanding the chronobiology of the largest genus of subterranean rodents.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We studied locomotor activity rhythms of C57/Bl6 mice under a chronic jet lag (CJL) protocol (ChrA(6/2)), which consisted of 6-hour phase advances of the light-dark schedule (LD) every 2 days. Through periodogram analysis, we found 2 components of the activity rhythm: a short-period component (21.01 +/- 0.04 h) that was entrained by the LD schedule and a long-period component (24.68 +/- 0.26 h). We developed a mathematical model comprising 2 coupled circadian oscillators that was tested experimentally with different CJL schedules. Our simulations suggested that under CJL, the system behaves as if it were under a zeitgeber with a period determined by (24 -[phase shift size/days between shifts]). Desynchronization within the system arises according to whether this effective zeitgeber is inside or outside the range of entrainment of the oscillators. In this sense, ChrA(6/2) is interpreted as a (24 - 6/2 = 21 h) zeitgeber, and simulations predicted the behavior of mice under other CJL schedules with an effective 21-hour zeitgeber. Animals studied under an asymmetric T = 21 h zeitgeber (carried out by a 3-hour shortening of every dark phase) showed 2 activity components as observed under ChrA(6/2): an entrained short-period (21.01 +/- 0.03 h) and a long-period component (23.93 +/- 0.31 h). Internal desynchronization was lost when mice were subjected to 9-hour advances every 3 days, a possibility also contemplated by the simulations. Simulations also predicted that desynchronization should be less prevalent under delaying than under advancing CJL. Indeed, most mice subjected to 6-hour delay shifts every 2 days (an effective 27-hour zeitgeber) displayed a single entrained activity component (26.92 +/- 0.11 h). Our results demonstrate that the disruption provoked by CJL schedules is not dependent on the phase-shift magnitude or the frequency of the shifts separately but on the combination of both, through its ratio and additionally on their absolute values. In this study, we present a novel model of forced desynchronization in mice under a specific CJL schedule; in addition, our model provides theoretical tools for the evaluation of circadian disruption under CJL conditions that are currently used in circadian research.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present study was conducted to investigate the influence of restricted food access on Solea senegalensis behaviour and daily expression of clock genes in central (diencephalon and optic tectum) and pheripheral (liver) tissues. The Senegalese sole is a marine teleost fish belonging to the Class of Actinopterygii, Order Pleuronectiformes and Family Soleidae. Its geographical distribution in the Mediterranean sea is fairly broad, covering the south and east of the Iberian Peninsula, the North of Africa and Middle East until the coast of Turkey. From a commercial perspective Solea senegalensis has acquired in recent years, a key role in aquacolture industry of the Iberian Peninsula. The Senegalese sole is also acquiring an important relevance in chronobiological studies as the number of published works focused on the sole circadian system has increased in the last few years. The molecular mechanisms underlying sole circadian rhythms has also been explored recently, both in adults and developing sole. Moreover, the consideration of the Pleuronectiformes Order as one of the most evolved teleost groups make the Senegalese sole a species of high interest under a comparative and phylogenetic point of view. All these facts have reinforced the election of Senegalese sole as model species for the present study. The animals were kept under 12L:12D photoperiod conditions and divided into three experimental groups depending on the feeding time: fed at midlight (ML), middark (MD) or random (RND) times. Throughout the experiment, the existence of a daily activity rhythm and it synchronization to the light-dark and feeding cycles was checked. To this end locomotor activity was registred by means of two infrared photocells placed in pvc tube 10 cm below the water surface (upper photocell) and the other one was located 10 cm above the bottom of the tank (bottom photocell). The photocell were connected to a computer so that every time a fish interrupted the infrared light beam, it produced an output signal that was recorded. The number of light beam interruptions was stored every 10 minutes by specialized software for data acquisition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a complex multitrophic plant-animal interaction system in which there are direct and indirect interactions between species, comprehending the dynamics of these multiple partners is very important for an understanding of how the system is structured. We investigated the plant Ficus racemosa L. (Moraceae) and its community of obligatory mutualistic and parasitic fig wasps (Hymenoptera: Chalcidoidea) that develop within the fig inflorescence or syconium, as well as their interaction with opportunistic ants. We focused on temporal resource partitioning among members of the fig wasp community over the development cycle of the fig syconia during which wasp oviposition and development occur and we studied the activity rhythm of the ants associated with this community. We found that the seven members of the wasp community partitioned their oviposition across fig syconium development phenology and showed interspecific variation in activity across the day-night cycle. The wasps presented a distinct sequence in their arrival at fig syconia for oviposition, with the parasitoid wasps following the galling wasps. Although fig wasps are known to be largely diurnal, we documented night oviposition in several fig wasp species for the first time. Ant activity on the fig syconia was correlated with wasp activity and was dependent on whether the ants were predatory or trophobiont-tending species; only numbers of predatory ants increased during peak arrivals of the wasps.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three mutants of Drosophila melanogaster have been isolated in which the free-running period of the circadian eclosion rhythm and the adult locomotor activity rhythm is affected. One mutant is arrhythmic, another has a short period of 19 hours, and the third has a long period of 28 hours. The mutants retain their phenotypes over the temperature range 18° to 25° C. All three mutants map near the tip of the X chromosome (distal to the centromere). By deficiency mapping, the short-period mutation has been localized to the 3B1-2 region. Complementation tests show that all three mutations affect the same functional gene.

Analysis of activity rhythms of individual mosaic flies indicates that the site of action of the short-period mutation is probably located in the head of the fly. A few activity patterns of split-head and mixed-head mosaics appear to possess both mutant and heterozygous components, suggesting that the fly head may contain two complete clocks capable of maintaining their periodicities independently.

The short-period mutation affects both the duration of the light-insensitive part of the oscillation and the degree to which the clock can be reset during the light-sensitive part of the oscillation.

Both the short-period and long-period mutant eclosion rhythms can be entrained to a period of 24 hours by a 12:12 light-dark cycle having a light intensity at least two orders of magnitude greater than that required to entrain the normal rhythm. The arrhythmic mutant does not entrain under these conditions. In the presence of a temperature cycle, however, the arrhythmic mutant does entrain, but its rhythm damps out when the temperature cycle is removed.

Evidence is presented that Pittendrigh's two-oscillator model for the clock in D. pseudoobscura applies to D. melanogaster as well. The three clock mutations primarily affect the light- sensitive driving oscillator. The arrhythmic mutation appears to have eliminated the driving oscillator while leaving the temperature-sensitive driven oscillator relatively intact.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydroclimatic conditions in the Gulf of Guinea between Senegal and Nigeria are briefly described emphasizing the seasonal variations of transparency. Analysis of the Abidjan based shrimp fleet allowed to the description of the seasonal variations of activity rhythms for Côte d'Ivoire, Ghana, and Nigeria. These rhythms are different between seasons, between fishing grounds, and sometimes even between depths on a given ground. These variations follow the turbidity ones. Diurnal activity is observed in very turbid waters, nocturnal and transition activity in clearer ones. The authors assume that the basic behaviour is a nocturnal one, but that the shrimp-trawlers catches reflect some apparently different ones resulting from diel variations in the stock availability. To explain the apparently diurnal behaviour observed most of the year over the whole Gulf of Guinea it is suggested that these generally benthic shrimps become nectonic at night when turbidity is very high. The results obtained in Ivory Coast, Ghana and Nigeria are compared to those from Senegal where hydroclimatic conditions are different. The similarities are emphasized. The differences in observed behaviour are supposedly caused by the cold season water temps which are sufficiently low to disturb the nor mal activity rhythm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

田间释放烟蚜茧蜂能很好地抑制烟蚜种群数量的增长。以常规施药烟田、不施药烟田作对照 ,在前期其对烟蚜的相对防效分别为 8.4%和 5 2 .8% ,中期为 6 4.0 %~ 79.0 %和 6 8.6 %~ 82 .3% ,后期为 93.0 %和 93.5 %。放蜂田烟蚜茧蜂成虫喜欢在烟株中下部叶片活动 ,1 3∶0 0~ 1 4∶0 0是其在烟株中下部活动的高峰期。烟蚜茧蜂对烟株下部叶片上烟蚜的较强选择性与烟蚜密度无关 ,下部叶片上的僵蚜数量均显著高于中、上和顶部。 1 3∶0 0~ 1 4∶0 0利用生物农药对烟株上部叶片上的烟蚜进行防治 ,既是烟蚜茧蜂与生物农药集成组装的切合点 ,又是保护利用田间烟蚜茧蜂的有效措施。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

从空间、时间、食物3个方面研究了若尔盖湿地3种两栖类的种间竞争,运用生态位理论探讨了3种两栖类利用环境资源的能力以及它们之间的共存模式,研究了3种两栖类年周期食性,并考察了畜牧业对3种两栖类食性及食物竞争格局的影响;此外,还通过实验室研究对2种两栖类幼体的种间竞争策略进行了考察。主要结果如下: 1、两栖类的空间资源利用状况:在3种两栖类成体生态位宽度的比较中,岷山蟾蜍(Bufo minshanicus)成体在牧场性质(0.41)、牛粪数量(0.42)、植被盖度(0.20)、地表温度(0.50)、地表湿度(0.51) 5个维度上的生态位宽度最窄;而倭蛙(Nanorana pleskei)成体在牛粪数量(0.81)、植被高度(0.63)、植被盖度(0.47)、小水体距离(0.68) 4个维度上的生态位宽度最宽。在3种两栖类亚成体生态位宽度的比较中,岷山蟾蜍亚成体在牧场性质(0.66)、牛粪数量(0.58)、植被高度(0.64)、小水体距离(0.51)、地表湿度(0.79) 5个维度的上生态位宽度最宽;倭蛙亚成体在牧场性质(0.39)、牛粪数量(0.30)、地表温度(0.18)、地表湿度(0.33) 4个维度上的生态位宽度最窄。高原林蛙(Rana kukunoris)在地表温度(成体:0.62;亚成体:0.56)、地表湿度(成体:0.84;亚成体:0.60)两个维度上具有较大的生态位宽度值,而在小水体距离维度上(成体:0.27;亚成体:0.14)的生态位宽度值则很小。比较3种无尾两栖类在不同生长阶段(成体、亚成体)的生态位宽度,发现高原林蛙和倭蛙的亚成体对栖息环境的要求更高。3种两栖类空间资源利用的相似程度很高,高原林蛙与倭蛙之间的生态重叠度(0.87)较之它与岷山蟾蜍(0.81)的生态位重叠度更大。 2、两栖类的日活动节律:高原林蛙成体、亚成体、岷山蟾蜍亚成体活动的最低气温为0℃、2℃、8℃;岷山蟾蜍和高原林蛙亚成体出现的数量与气温成极显著的正相关(r=0.797, p<0.001;r=0.794, p<0.001),高原林蛙成体出现的数量与气温有一定相关性(r=0.456, p<0.05);晴天时两栖类的活动性明显高于阴天(p<0.001);多云转晴天气,高原林蛙和岷山蟾蜍亚成体出现两次日活动高峰,分别为中午12:30左右和下午15:30~16:30之间;多云天气,高原林蛙和岷山蟾蜍亚成体出现两次日活动高峰,分别为9:30~10:30之间和15:30~16:30之间。 3、两栖类的食物资源利用状况:春、秋两季,高原林蛙最主要的食物是蜉金龟科(Aphodiidae)昆虫,相对重要性指数(IRI)最高(春季:35.28%,秋季:28.57%),其次为昆虫的幼虫,以及双翅目的毛蚊科(Bibionidae)、蝇科(Muscidae)、丽蝇科(Calliphoridae)昆虫,秋季,蝗虫是高原林蛙食物组成中的重要部分;岷山蟾蜍最主要的食物是蚂蚁(IRI,春季:85.54%,秋季:49.70%),其次为蜉金龟科、象甲科(Curculionidae)、步甲科(Carabidae)、粪金龟科(Geotrupidae) 等鞘翅目昆虫;倭蛙春季的最主要食物也是蜉金龟科昆虫(IRI,春季:13.41%),其次为蚂蚁、毛蚊科昆虫、昆虫的幼虫以及狼蛛科(Lycosidae)。3种两栖类中,倭蛙的食性生态位宽度相对较宽(0.43),而岷山蟾蜍(0.09)和高原林蛙(0.22)的生态位宽度较窄,与春季相比,两栖类在秋季的食谱更宽。以利用食物种类为标准,春季高原林蛙与倭蛙的生态位重叠度(0.40)比它与岷山蟾蜍的生态位重叠度(0.33)更大。 4、畜牧业对两栖类食性及食物竞争格局的影响:以藏牦牛粪为食物或寄居场所的昆虫,如蜉金龟科、粪金龟科、毛蚊科、蝇科、丽蝇科昆虫和某些昆虫幼虫,是3种两栖类食物谱中最主要的组成部分,蜉金龟科昆虫在高原林蛙食谱中的比例更高,高原林蛙可能从畜牧业发展中获得更多的好处,使之在食物竞争方面处于优势地位。与无放牧样地相比,在有放牧样地的中,两栖类食谱中的蜉金龟科昆虫数量更多(有放牧:31.94%;无放牧:21.32%)、出现频率更高(有放牧:76.38%;无放牧:44%)。然而在不同样地上(有放牧/无放牧),两栖类的食物组成无显著性差异(P=0.188),两栖类的数量(P=0.075)、肥满度(P=0.537)均没有显著差别。 5、两栖类幼体的竞争策略:实验室条件下,通过活动性水平,变态时的体重、增长率和完成变态所需时间考察自然条件下常同水塘分布的中华蟾蜍(Bufo gargarizans)和高原林蛙蝌蚪的竞争策略。结果表明:中华蟾蜍蝌蚪在不同食物资源条件下,所选择的生存策略可能不同,即食物资源充足时,增加活动性获取更多食物,食物资源有限时,降低活动性且提前完成变态;与中华蟾蜍蝌蚪相比,在食物资源有限时高原林蛙蝌蚪获取食物能力可能更强。 This paper presented the study of competition of three amphibians (Rana kukunoris, Nanorana pleskei, Bufo minshanicus) based on spatial, temporal and dietary scales in Zoige wetland. We measured coexistence patterns of three amphibians and analyzed their ability of exploiting resource. Effects of grazing on the diet composition and diet competition of amphibians were analyzed by their diet composition during spring and autumn. Furthermore, we examined the competitive ability of larval common frogs (Rana kukunoris)and common toads(Bufo gargarizans) in a laboratory experiment, and analyzed their competitive strategies respectively. The results were as follows: 1 .The status of using spatial resource Niche breadths of B. minshanicus adults on 5 dimensional axes including character of pasture(0.41), number of yaks dung(0.42), vegetation coverage(0.20), temperature (0.50)and humidity(0.51) of ground surface were narrower than adults of R. kukunoris and N. pleskei. Niche breadths of B. minshanicus subadults were broader than R.kukunoris subadults and N.pleskei subadults on 5 dimensional axes including character of pasture (0.66), number of yaks dung (0.58), vegetation height (0.64), distance to small waterbodies (0.51), humidity of ground surface (0.79). Niche breadths of N. pleskei subadults were the narrowest in three anurans subadults on 4 dimensional axes including character of pasture (0.39), number of yaks dung (0.30), temperature (0.18) and humidity (0.33) of ground surface, niche breadths of N. pleskei adults were the broadest in three anurans adults on 4 dimensional axes including number of yaks dung (0.81), vegetation height (0.63) and coverage(0.47), distance to small waterbodies(0.68).Comparatively, niche breadths of R. kukunoris were broader on the two microclimate factors including temperature(adults:0.62;subadults:0.56) and humidity (adults:0.84;subadults:0.60)of ground surface, but was narrow on distance to small waterbodies(adults:0.27;subadults:0.14). Strategies for using habitat resource of adults and subadults of the three species anuran were different. Generally, subadults of R. kukunoris and N. pleskei needs better habitat condition. It was quite similar that three anurans exploited spatial resource, Niche overlap between R. kukunoris and N. pleskei (0.87) was greater than that between R. kukunoris and B.minshanicus(0.81). 2.Daily activity rhythm R. kukunoris audlts were active when air temperatures were as low as 0℃, R. kukunoris subadults were active at 2℃, B.minshanicus subaudlts were active at 8℃. Positive correlation was found between activities of amphibians and air temperature, Subadults of R.kukunoris, (r=0.797, p<0.001), Subadults,of,B.minshanicus, (r=0.794, p<0.001), andbadults,of,R.kukunoris(r=0.456, p<0.05).Amphibians were more active during sunny days than cloudy days. In cloudy turning into sunny, R. kukunoris and B.minshanicus subadults had two active peak: at noon about 12:30 and 15:30~16:30 pm; in cloudy, R. kukunoris and B.minshanicus subadult had two active peak too : 9:30~10:30am,15:30~16:30pm. 3.Diet analysis Aphodiidae was the most commonly consumed food item by R. kukunoris based on index of relative importance (IRI) during spring (35.28%) and autumn (28.57%) in Zogie wetland. Besides Aphodiidae, larval insect, dipterans such as Bibionidae, Muscidae, Calliphoridae also were important food item for R. kukunoris, in autumn, locust was one of important food item for R. kukunoris. The most important food item for B.minshanicus during spring (IRI:85.54%) and autumn (IRI:49.70%) was ants, following, was coleopterans, such as Aphodiidae, dung beetle. Aphodiidae (IRI:13.41%) were the most important consumed food item by N. pleskei during spring too, following, was ants and Bibionidae. Dietary breadth of N. pleskei (0.43) were greater than R. kukunoris (0.22) and B. minshanicus (0.09). As a whole, Dietary breadth of amphibians during aurumn were greater than spring. Based on prey item, dietary overlap between R. kukunoris and N. pleskei (0.40) was greater than that between R. kukunoris and B.minshanicus (0.33) during spring. 4.Effects of grazing on the diet composition and diet competition of amphibians Amphibians are an important part of the pasture ecosystems as prey and predator. In Zogie wetland, major diet of amphibians was closely associated with dung of yaks, for example, Aphodiidae, Bibionidae, Muscidae, dung beetle. Dung of yaks was major diet and habitat of these insects. Proportion of Aphodiidae was higher in diet composition of R. kukunoris than N. pleskei and B.minshanicus, with development of pasturage, R. kukunoris may have a diet competitive advantage over N. pleskei and B.minshanicus. Number of Aphodiidae in diet composition of amphibians was higher in samples with grazing (31.94%) than in those without grazing (21.32%). Occurrence Frequency of Aphodiidae in diet composition of amphibians was higher in samples with grazing (76.38%) than in those without grazing (44%). However, There was not significantly different on diet composition (P=0.188), and number (P=0.075) and the relative fatness (P=0.537) of amphibians between grazing samples and without grazing. 5.Competitive strategies of amphibian larvae I examined the competitive ability of larval toads (Bufo gargarizans) and frogs (Rana kukunoris) which co-occur in the nature pond by activity level, the growth rate and mass at metamorphosis and larval period in a laboratory experiment. The results suggest: In laborary, B.gargarizans adapted himself to different food level by changing activity. At high food level, B. gargarizans increased activity to gain more diet. At low food level, B. gargarizans decreased activity and achieved early metamorphosis. When food resource was limit, R. kukunoris could gain more food than B. gargarizans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Summer diets of two sympatric raptors Upland Buzzards (Buteo hemilasius Temminck et Schlegel) and Eurasian Eagle Owls (Bubo bubo L. subsp. Hemachalana Hume) were studied in an alpine meadow (3250 m a.s.l.) on Qinghai-Tibet Plateau, China. Root voles Microtus oeconomus Pallas, plateau pikas Ochotona curzoniae Hodgson, Gansu pikas O. cansus Lyon and plateau zokors Myospalax baileyi Thomas were the main diet components of Upland Buzzards as identified through the pellets analysis with the frequency of 57, 20, 19 and 4%, respectively. The four rodent species also were the main diet components of Eurasian Eagle Owls basing on the pellets and prey leftovers analysis with the frequency of 53, 26, 13 and 5%, respectively. The food niche breadth indexes of Upland Buzzards and Eurasian Eagle Owls were 1.60 and 1.77 respectively (higher value of the index means the food niche of the raptor is broader), and the diet overlap index of the two raptors was larger (C-ue = 0.90) (the index range from 0 - no overlap - to I - complete overlap). It means that the diets of Upland Buzzards and Eurasian Eagle Owls were similar (Two Related Samples Test, Z = -0.752, P = 0.452). The classical resource partitioning theory can not explain the coexistence of Upland Buzzards and Eurasian Eagle Owls in alpine meadows of Qinghai-Tibet Plateau. However, differences in body size, predation mode and activity rhythm between Upland Buzzards and Eurasian Eagle Owls may explain the coexistence of these two sympatric raptors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pineal melatonin release exhibits a circadian rhythm with a tight nocturnal pattern. Melatonin synthesis is regulated by the master circadian clock within the hypothalamic suprachiasmatic nucleus (SCN) and is also directly inhibited by light. The SCN is necessary for both circadian regulation and light inhibition of melatonin synthesis and thus it has been difficult to isolate these two regulatory limbs to define the output pathways by which the SCN conveys circadian and light phase information to the pineal. A 22-h light-dark (LD) cycle forced desynchrony protocol leads to the stable dissociation of rhythmic clock gene expression within the ventrolateral SCN (vlSCN) and the dorsomedial SCN (dmSCN). In the present study, we have used this protocol to assess the pattern of melatonin release under forced desynchronization of these SCN subregions. In light of our reported patterns of clock gene expression in the forced desynchronized rat, we propose that the vlSCN oscillator entrains to the 22-h LD cycle whereas the dmSCN shows relative coordination to the light-entrained vlSCN, and that this dual-oscillator configuration accounts for the pattern of melatonin release. We present a simple mathematical model in which the relative coordination of a single oscillator within the dmSCN to a single light-entrained oscillator within the vlSCN faithfully portrays the circadian phase, duration and amplitude of melatonin release under forced desynchronization. Our results underscore the importance of the SCN`s subregional organization to both photic input processing and rhythmic output control.