1000 resultados para ACTIVE CARBONS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Active carbon supported copper oxides were used in NO reduction. The conversions of NO reduction depends strongly on surface oxygen-containing groups on the active carbons, among them the carboxyls and lactones favored remarkably the NO reduction. However, hydrochloric acid treatment led to the decomposition of the carboxyls and lactones on C2 and C3, decreasing their reactivities for NO reduction. Concentrated HNO3 treatment of active carbon produced higher conversions of NO reduction at relatively low temperatures due to the marked increase in the amounts of the carboxyls and lactones.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Pt/C catalysts were prepared with pine active carbon and Vulcan XC-72 active carbon as the supports. The performances of the Pt/C catalysts in polymer electrolyte membrane fuel cell were compared. The result indicates that the performance of Pt/Vulcan XC-72 is better than that of Pt/pine. The physical and chemical properties of the two active carbons were measured using several analysis techniques. It was found that the pore size, specific conductivity and the surface function group significantly influence the performance of the electrocatalyst.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A commercially available coconut-shell-derived active carbon was oxidized with nitric acid, and both the original and oxidized active carbons were treated with ammonia at 1073 K to incorporate nitrogen functional groups into the carbon. An active carbon with very high nitrogen content (similar to9.4 wt % daf) was also prepared from a nitrogen-rich precursor, polyacrylonitrile (PAN). These nitrogen-rich carbons had points of zero charge (pH(pzc)) similar to H-type active carbons. X-ray absorption near-edge structure (XANES) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and temperature-programmed desorption (TPD) were used to characterize the nitrogen functional groups in the carbons. The nitrogen functional groups present on the carbon surface were pyridinic, pyrrolic (or indolic), and pyridonic structures. The adsorption of transition metal cations Cd2+, Ni2+, and Cu2+ from aqueous solution on the suite of active carbons showed that adsorption was markedly higher for carbons with nitrogen functional groups present on the surface than for carbons with similar pH(pzc) values. In contrast, the adsorption characteristics of Ca2+ from aqueous solution were similar for all the carbons studied. Flow microcalorimetry (FMC) studies showed that the enthalpies of adsorption of Cd2+(aq) on the active carbons with high nitrogen contents were much higher than for nitric acid oxidized carbons studied previously, which also had enhanced adsorption characteristics for metal ion species. The enthalpies of adsorption of Cu2+ were similar to those obtained for Cd2+ for specific active carbons. The nitrogen functional groups in the carbons act as surface coordination sites for the adsorption of transition metal ions from aqueous solution. The adsorption characteristics of these carbons are compared with those of oxidized carbons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The excess Helmholtz free energy functional for associating hard sphere fluid is formulated by using a modified fundamental measure theory [Y. X. Yu and J. Z. Wu, J. Chem. Phys. 117, 10156 (2002)]. Within the framework of density functional theory, the thermodynamic properties including phase equilibria for both molecules and monomers, equilibrium plate-fluid interfacial tensions and isotherms of excess adsorption, average molecule density, average monomer density, and plate-fluid interfacial tension for four-site associating hard sphere fluids confined in slit pores are investigated. The phase equilibria inside the hard slit pores and attractive slit pores are determined according to the requirement that temperature, chemical potential, and grand potential in coexistence phases should be equal and the plate-fluid interfacial tensions at equilibrium states are predicted consequently. The influences of association energy, fluid-solid interaction, and pore width on phase equilibria and equilibrium plate-fluid interfacial tensions are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El aumento de la cantidad de lodos y las dificultades inherentes a su aplicación agrícola y/o disposición en vertederos, hace necesario encontrar nuevas alternativas para su gestión. A nivel europeo, hoy en día se tiende hacia la aplicación de tratamientos térmicos (incineración, pirólisis y gasificación) que permiten una valoración energética de los lodos, si bien generan un residuo sólido que sigue siendo necesario gestionar. El problema medioambiental provocado por (malos) olores resulta difícil de abordar de una manera genérica, teniendo en consideración la propia naturaleza del olor y sus posibles causas. Los olores en las EDARs son provocados básicamente por la degradación de la materia orgánica en condiciones anaeróbicas y se detectan en todas las operaciones unitarias en diferentes niveles de concentración. Esta tesis incidiendo en ambos aspectos, tiene por objeto investigar la valorización de lodos como materiales precursores de adsorbentes/ catalizadores para la eliminación de olores en el entorno de las EDARs, maximizando la reutilización de los lodos. Para la realización de los experimentos se han seleccionado lodos procedentes de tres EDARs situadas en la región de Girona (SC, SB, SL) que difieren en cuanto al tratamiento de los lodos. Ambas muestras han sido caracterizadas con el fin de determinar las diferencias más importantes en los lodos de partida. Los parámetros de caracterización incluyen el análisis de composición química (análisis elemental e inmediato, determinación contenido en cenizas, medida pH, DRX, FT-IR, SEM / EDX) así como análisis de superficie (adsorción de N2 y CO2). En primer lugar los lodos caracterizados han sido sometidos a diferentes tratamientos térmicos de gasificación y pirólisis y los adsorbentes/ catalizadores obtenidos se han probado como adsorbentes para la eliminación de H2S. Como consecuencia de este estudio, se ha desechado el uso de uno de lodos (SC) puesto que se obtenían resultados muy similares a (SB), a continuación el estudio se centró en el lodo de SL. Con este objetivo se han preparado 12 muestras 6 de ellas pirolizadas y 6 gasificadas en el rango de temperaturas que comprende 600-1100 ºC. Posteriormente las muestras han sido caracterizadas y se ha determinado la capacidad de eliminación (x/M) del H2S. Los resultados muestran que hemos sido capaces de obtener unos materiales que si bien, presentan un bajo desarrollo de porosidad dan lugar a valores de capacidades de eliminación elevados y comparables a carbones y materiales adsorbentes comerciales (Centaur, Sorbalit). Las elevadas eficiencias de eliminación se atribuyen básicamente a la presencia de especies catalíticamente activas tales como los óxidos mixtos de calcio y hierro determinados por DRX en las muestras tratadas térmicamente. El segundo bloque de resultados se centra la mejora de las propiedades texturales de estos materiales adsorbentes. Con este objetivo se llevaron acabo procesos de activación física con CO2 y química con H3PO4 e hidróxidos alcalinos (NaOH y KOH), que hasta el momento no se había probado con este tipo de precursores. Los resultados indican que la activación física (CO2) y química (H3PO4) no son unos buenos métodos para la obtención de adsorbentes altamente porosos con este tipo de materia prima bajo las condiciones probadas, sin embargo la activación con hidróxidos alcalinos da lugar a materiales adsorbentes con superficies específicas de hasta 1600 m2g-1. En el caso de la activación con hidróxidos, tanto el incremento de la relación agente activante/ precursor como el incremento de la temperatura producen un descenso del rendimiento, al mismo tiempo que incrementan el valor de SBET. Los materiales resultantes de la activación con hidróxidos alcalinos se han probado como adsorbentes/ catalizadores para la eliminación de H2S. Los resultados indican que un incremento del área superficial no es indicativo de un aumento de la capacidad de eliminación dada la naturaleza ácida de estos materiales obtenidos. Con el fin de contrarrestar el efecto ácido de estos materiales se han realizado los mismos ensayos añadiendo NaOH al lecho de reacción llegando a valores de x/M de hasta 450 mgg-1. Posteriormente también se han realizado ensayos de eliminación de NH3 con algunas de estas muestras, y los resultados obtenidos de x/M son del orden de carbones activados comerciales. Los materiales adsorbentes obtenidos tras la activación con hidróxidos alcalinos se convierten en materiales muy atractivos para ser utilizados como adsorbentes/ catalizadores de múltiples contaminantes (COVs, Hg...).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to diminishing petroleum reserves, unsteady market situation and the environmental concerns associated with utilization of fossil resources, the utilization of renewables for production of energy and chemicals (biorefining) has gained considerable attention. Biomass is the only sustainable source of organic compounds that has been proposed as petroleum equivalent for the production of fuels, chemicals and materials. In fact, it would not be wrong to say that the only viable answer to sustainably convene our future energy and material requirements remain with a bio-based economy with biomass based industries and products. This has prompted biomass valorization (biorefining) to become an important area of industrial research. While many disciplines of science are involved in the realization of this effort, catalysis and knowledge of chemical technology are considered to be particularly important to eventually render this dream to come true. Traditionally, the catalyst research for biomass conversion has been focused primarily on commercially available catalysts like zeolites, silica and various metals (Pt, Pd, Au, Ni) supported on zeolites, silica etc. Nevertheless, the main drawbacks of these catalysts are coupled with high material cost, low activity, limited reusability etc. – all facts that render them less attractive in industrial scale applications (poor activity for the price). Thus, there is a particular need to develop active, robust and cost efficient catalytic systems capable of converting complex biomass molecules. Saccharification, esterification, transesterification and acetylation are important chemical processes in the valorization chain of biomasses (and several biomass components) for production of platform chemicals, transportation fuels, food additives and materials. In the current work, various novel acidic carbons were synthesized from wastes generated from biodiesel and allied industries, and employed as catalysts in the aforementioned reactions. The structure and surface properties of the novel materials were investigated by XRD, XPS, elemental analysis, SEM, TEM, TPD and N2-physisorption techniques. The agro-industrial waste derived sulfonic acid functionalized novel carbons exhibit excellent catalytic activity in the aforementioned reactions and easily outperformed liquid H2SO4 and conventional solid acids (zeolites, ion-exchange resins etc). The experimental results indicated strong influence of catalyst pore-structure (pore size, pore-volume), concentration of –SO3H groups and surface properties in terms of the activity and selectivity of these catalysts. Here, a large pore catalyst with high –SO3H density exhibited the highest esterification and transesterification activity, and was successfully employed in biodiesel production from fatty acids and low grade acidic oils. Also, a catalyst decay model was proposed upon biodiesel production and could explain that the catalyst loses its activity mainly due to active site blocking by adsorption of impurities and by-products. The large pore sulfonated catalyst also exhibited good catalytic performance in the selective synthesis of triacetin via acetylation of glycerol with acetic anhydride and out-performed the best zeolite H-Y with respect to reusability. It also demonstrated equally good activity in acetylation of cellulose to soluble cellulose acetates, with the possibility to control cellulose acetate yield and quality (degree of substitution, DS) by a simple adjustment of reaction time and acetic anhydride concentration. In contrast, the small pore and highly functionalized catalysts obtained by hydrothermal method and from protein rich waste (Jatropha de-oiled waste cake, DOWC), were active and selective in the esterification of glycerol with fatty acids to monoglycerides and saccharification of cellulosic materials, respectively. The operational stability and reusability of the catalyst was found to depend on the stability of –SO3H function (leaching) as well as active site blocking due to adsorption of impurities during the reaction. Thus, our results corroborate the potential of DOWC derived sulfated mesoporous active carbons as efficient integrated solid acid catalysts for valorization of biomass to platform chemicals, biofuel, bio-additive, surfactants and celluloseesters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linalool-8-monoxygenase, a typical bacterial P-450 heme thiolase, shows a high degree of substrate specificity towards linalool. The active site of the pure enzyme has been probed with a large number of substrate analogues with systematic alterations or conformational variations in the linalool molecule. The comparison of three parameters, the mo→mos conversion of the enzyme as a result of substrate binding monitored at 392 nm, theK D of the analogues giving information about energies of association and the relative turnover as substrate have given information about the space-filling characteristics of the substrates in the enzyme cleft, the number of contacts the molecules make with the respective domains of the enzyme and the distance of the site undergoing hydroxylation from the oxygen site, respectively. The data permit the conclusion that linalool makes contact with the enzyme by hydrogen bonding with the hydroxyl group as well through hydrophobic association with all the eight carbons carrying hydrogen in the molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impetus for the increasing interest in studying surface active ionic liquids (SAILs; ionic liquids with long-chain ""tails"") is the enormous potential for their applications, e.g., in nanotechnology and biomedicine. The progress in these fields rests on understanding the relationship between surfactant structure and solution properties, hence applications. This need has prompted us to extend our previous study on 1-(1-hexadecyl)-3-methylimidazolium chloride to 1-(1-alkyl)-3-methylimidazolium chlorides, with alkyl chains containing 10, 12, and 14 carbons. In addition to investigating relevant micellar properties, we have compared the solution properties of the imidazolium-based surfactants with: 1-(1-alkyl)pyridinium chlorides, and benzyl (2-acylaminoethyl)dimethylammonium chlorides. The former series carries a heterocyclic ring head-group, but does not possess a hydrogen that is as acidic as H2 of the imidazolium ring. The latter series carries an aromatic ring, a quaternary nitrogen and (a hydrogen-bond forming) amide group. The properties of the imidazolium and pyridinium surfactants were determined in the temperature range from 15 to 75 degrees C. The techniques employed were conductivity, isothermal titration calorimetry, and static light scattering. The results showed the important effects of the interactions in the interfacial region on the micellar properties over the temperature range studied. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, we explore the immobilization of nickel on various carbon supports and their application as electrocatalysts for the oxidation of propargyl alcohol in alkaline medium. In comparison with massive and nanoparticulated nickel electrode systems, Ni-doped nanoporous carbons provided similar propargyl alcohol conversions for very low metallic contents. Nanoparticulated Ni on various carbon supports gave rise to the highest electrocatalytic activity in terms of product selectivity, with a clear dependence on Ni content. The results point to the importance of controlling the dispersion of the Ni phase within the carbon matrix for a full exploitation of the electroactive area of the metal. Additionally, a change in the mechanism of the propargyl alcohol electrooxidation was noted, which seems to be related to the physicochemical properties of the carbon support as well. Thus, the stereoselectivity of the electrooxidative reaction can be controlled by the active nickel content immobilized on the anode, with a preferential oxidation to (Z)-3-(2-propynoxy)-2-propenoic acid with high Ni-loading, and to propiolic acid with low loading of active Ni sites. Moreover, the formation of (E)-3-(2-propynoxy)-2-propenoic acid was discriminatory irrespective of the experimental conditions and Ni loadings on the carbon matrixes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A biomass derived carbon, a commercial microporous carbon and a xerogel mesoporous carbon catalysts were used in the study of α-pinene methoxilation reaction and the influence of textural and physical–chemical properties of the carbons was evaluated. Biomass carbon presented the higher activity, whereas the commercial one is the less active in the conditions studied. The main product of the reaction was α-terpinyl methyl ether and good values of selectivity were obtained over all the catalysts. A kinetic model was developed assuming that the α-pinene is consumed according to the parallel reaction network. The kinetic model presents high quality fittings to the experimental concentration profiles. These results show that it is possible to activate a waste residue using H3PO4 and convert it to high added value product such as acid catalyst.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A CNF-monolith sample (carbon nanofibres grown on a ceramic monolith), and a granular carbon xerogel have been used as supports for hybrid catalysts where the active species is an Rh diamine complex. The advantages of these supports are their open porous structure and their morphology, which make catalyst handling easier and avoid difficult separation processes. The obtained catalysts are noticeably more active than the homogeneous Rh complex and are stable against leaching. At first use, partial reduction of the Rh complex takes place and nanometer-sized Rh particles develop, which increases the catalyst activity. Despite the open porous structure, mass transport limitations are present, especially in the case of the carbon xerogel based catalyst. Differences in internal mass transfer limitations are essentially due to the different diffusional path lengths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new approach based on the nonlocal density functional theory to determine pore size distribution (PSD) of activated carbons and energetic heterogeneity of the pore wall is proposed. The energetic heterogeneity is modeled with an energy distribution function (EDF), describing the distribution of solid-fluid potential well depth (this distribution is a Dirac delta function for an energetic homogeneous surface). The approach allows simultaneous determining of the PSD (assuming slit shape) and EDF from nitrogen or argon isotherms at their respective boiling points by using a set of local isotherms calculated for a range of pore widths and solid-fluid potential well depths. It is found that the structure of the pore wall surface significantly differs from that of graphitized carbon black. This could be attributed to defects in the crystalline structure of the surface, active oxide centers, finite size of the pore walls (in either wall thickness or pore length), and so forth. Those factors depend on the precursor and the process of carbonization and activation and hence provide a fingerprint for each adsorbent. The approach allows very accurate correlation of the experimental adsorption isotherm and leads to PSDs that are simpler and more realistic than those obtained with the original nonlocal density functional theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of nonlocal density functional theory (NLDFT) to determine pore size distribution (PSD) of activated carbons using a nongraphitized carbon black, instead of graphitized thermal carbon black, as a reference system is explored. We show that in this case nitrogen and argon adsorption isotherms in activated carbons are precisely correlated by the theory, and such an excellent correlation would never be possible if the pore wall surface was assumed to be identical to that of graphitized carbon black. It suggests that pore wall surfaces of activated carbon are closer to that of amorphous solids because of defects of crystalline lattice, finite pore length, and the presence of active centers.. etc. Application of the NLDFT adapted to amorphous solids resulted in quantitative description of N-2 and Ar adsorption isotherms on nongraphitized carbon black BP280 at their respective boiling points. In the present paper we determined solid-fluid potentials from experimental adsorption isotherms on nongraphitized carbon black and subsequently used those potentials to model adsorption in slit pores and generate a corresponding set of local isotherms, which we used to determine the PSD functions of different activated carbons. (c) 2005 Elsevier Ltd. All rights reserved.