939 resultados para ACTIVATED CITRATE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Acid soils comprise up to 50% of the world's arable lands and in these areas aluminum (Al) toxicity impairs root growth, strongly limiting crop yield. Food security is thereby compromised in many developing countries located in tropical and subtropical regions worldwide. In sorghum, SbMATE, an Al-activated citrate transporter, underlies the Alt(SB) locus on chromosome 3 and confers Al tolerance via Al-activated root citrate release. Methodology: Population structure was studied in 254 sorghum accessions representative of the diversity present in cultivated sorghums. Al tolerance was assessed as the degree of root growth inhibition in nutrient solution containing Al. A genetic analysis based on markers flanking Alt(SB) and SbMATE expression was undertaken to assess a possible role for Alt(SB) in Al tolerant accessions. In addition, the mode of gene action was estimated concerning the Al tolerance trait. Comparisons between models that include population structure were applied to assess the importance of each subpopulation to Al tolerance. Conclusion/Significance: Six subpopulations were revealed featuring specific racial and geographic origins. Al tolerance was found to be rather rare and present primarily in guinea and to lesser extent in caudatum subpopulations. Alt(SB) was found to play a role in Al tolerance in most of the Al tolerant accessions. A striking variation was observed in the mode of gene action for the Al tolerance trait, which ranged from almost complete recessivity to near complete dominance, with a higher frequency of partially recessive sources of Al tolerance. A possible interpretation of our results concerning the origin and evolution of Al tolerance in cultivated sorghum is discussed. This study demonstrates the importance of deeply exploring the crop diversity reservoir both for a comprehensive view of the dynamics underlying the distribution and function of Al tolerance genes and to design efficient molecular breeding strategies aimed at enhancing Al tolerance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AMPK, a master metabolic switch, mediates the observed increase of glucose uptake in locomotory muscle of mammals during exercise. AMPK is activated by changes in the intracellular AMP:ATP ratio when ATP consumption is stimulated by contractile activity but also by AICAR and metformin, compounds that increase glucose transport in mammalian muscle cells. However, the possible role of AMPK in the regulation of glucose metabolism in skeletal muscle has not been investigated in other vertebrates, including fish. In this study, we investigated the effects of AMPK activators on glucose uptake, AMPK activity, cell surface levels of trout GLUT4 and expression of GLUT1 and GLUT4 as well as the expression of enzymes regulating glucose disposal and PGC1α in trout myotubes derived from a primary muscle cell culture. We show that AICAR and metformin significantly stimulated glucose uptake (1.6 and 1.3 fold, respectively) and that Compound C completely abrogated the stimulatory effects of the AMPK activators on glucose uptake. The combination of insulin and AMPK activators did not result in additive nor synergistic effects on glucose uptake. Moreover, exposure of trout myotubes to AICAR and metformin resulted in an increase in AMPK activity (3.8 and 3 fold, respectively). We also provide evidence suggesting that stimulation of glucose uptake by AMPK activators in trout myotubes may take place, at least in part, by increasing the cell surface and mRNA levels of trout GLUT4. Finally, AICAR increased the mRNA levels of genes involved in glucose disposal (hexokinase, 6-phosphofructokinase, pyruvate kinase and citrate synthase) and mitochondrial biogenesis (PGC-1α) and did not affect glycogen content or glycogen synthase mRNA levels in trout myotubes. Therefore, we provide evidence, for the first time in non-mammalian vertebrates, suggesting a potentially important role of AMPK in stimulating glucose uptake and utilization in the skeletal muscle of fish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jute fiber is the second most common natural cellulose fiber worldwide, especially in recent years, due to its excellent physical, chemical and structural properties. The objective of this paper was to investigate: the thermal degradation of in natura jute fiber, and the production and characterization of the generated activated carbon. The production consisted of carbonization of the jute fiber and activation with steam. During the activation step the amorphous carbon produced in the initial carbonization step reacted with oxidizing gas, forming new pores and opening closed pores, which enhanced the adsorptive capacity of the activated carbon. N2 gas adsorption at 77K was used in order to evaluate the effect of the carbonization and activation steps. The results of the adsorption indicate the possibility of producing a porous material with a combination of microporous and mesoporous structure, depending on the parameters used in the processes, with resulting specific surface area around 470 m2.g-1. The thermal analysis indicates that above 600°C there is no significant mass loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated in vitro the pulp chamber temperature rise induced by the light-activated dental bleaching technique using different light sources. The root portions of 78 extracted sound human mandibular incisors were sectioned approximately 2 mm below the cementoenamel junction. The root cavities of the crowns were enlarged to facilitate the correct placing of the sensor into the pulp chamber. Half of specimens (n=39) was assigned to receive a 35% hydrogen peroxide gel on the buccal surface and the other halt (n=39) not to receive the bleaching agent. Three groups (n=13) were formed for each condition (bleach or no bleach) according to the use of 3 light sources recommended for dental bleaching: a light-emitting diode (LED)laser system, a LED unit and a conventional halogen light. The light sources were positioned perpendicular to the buccal surface at a distance of 5 mm and activated during 30 s. The differences between the initial and the highest temperature readings for each specimen were obtained, and, from the temperature changes, the means for each specimen and each group were calculated. The values of temperature rise were compared using Kruskal-Wallis test at 1% significance level. Temperature rise varied significantly depending on the light-curing unit, with statistically significant differences (p<0.01) among the groups. When the bleaching agent was not applied, the halogen light induced the highest temperature rise (2.38±0.66ºC). The LED unit produced the lowest temperature increase (0.29±0.13ºC); but there was no significant difference between LED unit and LED-laser system (0.35±0.15ºC) (p>0.01). When the bleaching agent was applied, there were significant differences among groups (p<0.01): halogen light induced the highest temperature rise (1.41±0.64ºC), and LED-laser system the lowest (0.33±0.12ºC); however, there was no difference between LED-laser system and LED unit (0.44±0.11ºC). LED and LED-laser system did not differ significantly from each other regardless the temperature rise occurred with or without bleaching agent application. It may be concluded that during light-activated tooth bleaching, with or without the bleaching agent, halogen light promoted higher pulp chamber temperature rise than LED unit and LED-laser system. The tested light-curing units provided increases in the pulp chamber temperature that were compatible with pulpal health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-conductance Ca(2+)-activated K(+) channels (BK) play a fundamental role in modulating membrane potential in many cell types. The gating of BK channels and its modulation by Ca(2+) and voltage has been the subject of intensive research over almost three decades, yielding several of the most complicated kinetic mechanisms ever proposed. A large number of open and closed states disposed, respectively, in two planes, named tiers, characterize these mechanisms. Transitions between states in the same plane are cooperative and modulated by Ca(2+). Transitions across planes are highly concerted and voltage-dependent. Here we reexamine the validity of the two-tiered hypothesis by restricting attention to the modulation by Ca(2+). Large single channel data sets at five Ca(2+) concentrations were simultaneously analyzed from a Bayesian perspective by using hidden Markov models and Markov-chain Monte Carlo stochastic integration techniques. Our results support a dramatic reduction in model complexity, favoring a simple mechanism derived from the Monod-Wyman-Changeux allosteric model for homotetramers, able to explain the Ca(2+) modulation of the gating process. This model differs from the standard Monod-Wyman-Changeux scheme in that one distinguishes when two Ca(2+) ions are bound to adjacent or diagonal subunits of the tetramer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Common variable immunodeficiency disorder (CVID) is the commonest cause of primary antibody failure in adults and children, and characterized clinically by recurrent bacterial infections and autoimmune manifestations. Several innate immune defects have been described in CVID, but no study has yet investigated the frequency, phenotype or function of the key regulatory cell population, natural killer T (NKT) cells. We measured the frequencies and subsets of NKT cells in patients with CVID and compared these to healthy controls. Our results show a skewing of NKT cell subsets, with CD4+ NKT cells at higher frequencies, and CD8+ NKT cells at lower frequencies. However, these cells were highly activated and expression CD161. The NKT cells had a higher expression of CCR5 and concomitantly expression of CCR5+CD69+CXCR6 suggesting a compensation of the remaining population of NKT cells for rapid effector action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ion channels are pores formed by proteins and responsible for carrying ion fluxes through cellular membranes. The ion channels can assume conformational states thereby controlling ion flow. Physically, the conformational transitions from one state to another are associated with energy barriers between them and are dependent on stimulus, such as, electrical field, ligands, second messengers, etc. Several models have been proposed to describe the kinetics of ion channels. The classical Markovian model assumes that a future transition is independent of the time that the ion channel stayed in a previous state. Others models as the fractal and the chaotic assume that the rate of transitions between the states depend on the time that the ionic channel stayed in a previous state. For the calcium activated potassium channels of Leydig cells the R/S Hurst analysis has indicated that the channels are long-term correlated with a Hurst coefficient H around 0.7, showing a persistent memory in this kinetic. Here, we applied the R/S analysis to the opening and closing dwell time series obtained from simulated data from a chaotic model proposed by L. Liebovitch and T. Toth [J. Theor. Biol. 148, 243 (1991)] and we show that this chaotic model or any model that treats the set of channel openings and closings as independent events is inadequate to describe the long-term correlation (memory) already described for the experimental data. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental studies of magnetoresistance in high-mobility wide quantum wells reveal oscillations which appear with an increase in temperature to 10 K and whose period is close to that of Shubnikov-de Haas oscillations. The observed phenomenon is identified as magnetointersubband oscillations caused by the scattering of electrons between two occupied subbands and the third subband which becomes occupied as a result of thermal activation. These small-period oscillations are less sensitive to thermal suppression than the large-period magnetointersubband oscillations caused by the scattering between the first and the second subbands. Theoretical study, based on consideration of electron scattering near the edge of the third subband, gives a reasonable explanation of our experimental findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhanced mitochondrial biogenesis promoted by eNOS activation is believed to play a central role in the beneficial effects of calorie restriction (CR). Since treatment of mice with dinitrophenol (DNP) promotes health and lifespan benefits similar to those observed in CR, we hypothesized that it could also impact biogenesis. We found that DNP and CR increase citrate synthase activity, PGC-1 alpha, cytochrome c oxidase and mitofusin-2 expression, as well as fasting plasma levels of NO(center dot) products. In addition, eNOS and Akt phosphorylation in skeletal muscle and visceral adipose tissue was activated in fasting CR and DNP animals. Overall, our results indicate that systemic mild uncoupling activates eNOS and Akt-dependent pathways leading to mitochondrial biogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of activated charcoal and ion-exchange resin to cleaN up and concentrate enzymes in extracts from biodegraded wood. Ceriporiopsis subvermispora was used for the biodegradation of Eucalyptus grandis chips in the presence or absence of co-substrates (glucose and corn steep liquor) during 7, 14 and 28 days. Afterwards, the biodegraded chips were extracted with 50 mM sodium acetate buffer (pH 5.5) supplemented with 0.01% Tween 60. High activities of manganese peroxidases (MnPs) were observed in all the extracts, both in the absence (430, 765 and 896 UI kg(-1) respectively) and in the presence of co-substrates (1,013; 2,066 and 2,323 UI kg(-1) respectively). The extracts presented a high ratio between absorbances at 280 and 405 nm, indicating a strong abundance of aromatic compounds derived from lignin over heme-peroxidases. Adsorption into activated charcoal showed to be an adequate strategy to reduce the absorbance at 280 urn in all the extracts. Moreover, it allowed to maximize the capacity of an anion exchange resin bed (DEAE-Sepharose) used to concentrate the MnPs present in the extracts. It was concluded that the use of activated charcoal followed by adsorption into DEAE Sepharose is a strategy that can be used to concentrate MnPs in extracts obtained during the biodegradation of E. grandis by C. subvermispora.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different types of activated carbon were prepared by chemical activation of brewer`s spent grain (BSG) lignin using H(3)PO(4) at various acid/lignin ratios (1, 2, or 3 g/g) and carbonization temperatures (300, 450, or 600 degrees C), according to a 2(2) full-factorial design. The resulting materials were characterized with regard to their surface area, pore volume, and pore size distribution, and used for detoxification of BSG hemicellulosic hydrolysate (a mixture of sugars, phenolic compounds, metallic ions, among other compounds). BSG carbons presented BET surface areas between 33 and 692 m(2)/g, and micro- and mesopores with volumes between 0.058 and 0.453 cm(3)/g. The carbons showed high capacity for adsorption of metallic ions, mainly nickel, iron, chromium, and silicon. The concentration of phenolic compounds and color were also reduced by these sorbents. These results suggest that activated carbons with characteristics similar to those commercially found and high adsorption capacity can be produced from BSG lignin. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work analyses pellets prepared with iron ore that has been mechanically activated by high energy ball milling. Pellet feed iron ore was submitted to high-energy ball milling for 60 minutes, and the resulting material was analysed through measurements of particle size and specific surface area, as well as X-ray diffraction. Pellets were prepared from this material. The pellets were heated at temperatures ranging from 1000 to 1250 degrees C in a muffle furnace, and submitted to the maximum temperature during 10 - 12 minutes. The samples were then tested regarding crushing strength, densification and porosity, and were examined in a scanning electronic microscope. The results were compared to those obtained with similar samples made from non-milled pellet feed. It has been shown that through high-energy ball milling of iron ore it is possible to achieve pellets presenting high densification and compressive strength at firing temperatures lower than the usual ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims to study the adsorption of phenol on activated carbons (ACs) and the consecutive in situ regeneration of carbon by Fenton oxidation. Two different operations have been carried Out: (1) a batch procedure in order to investigate the influence of Fe(2+) and H(2)O(2) concentrations; (2) continuous fixed bed adsorption, followed by a batch circulation of the Fenton`s reagent through the saturated AC bed. to examine the efficiency of the real process. Two different activated carbons have been also studied: a both micro- and mesoporous AC (L27) and an only microporous One (S23). In the batch reactor the best conditions found for pollutant mineralization in the homogeneous Fenton system are not the best For AC regeneration: a continuous reduction of adsorption capacity of L27 is observed after 3 oxidations, due to the decrease of both AC weight and surface area. Higher concentration of Fe(2+) and lower concentration of H(2)O(2) (2 times the stoichiometry) lead to a 50% recovery of the initial adsorption capacity during at least four consecutive cycles for L27, while about 20% or less for S23. In the consecutive continuous adsorption/batch Fenton oxidation process, the regeneration efficiency reaches 30-40% for L27 after two cycles whatever the feed concentration and less than 10% for S23. A photo-Fenton test performed on L27 shows almost complete mineralization (contrary to ""dark"" Fenton) and further improves recovery of AC adsorption capacity although not complete (56% after two cycles).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics and mechanism of the thermal activation of peroxydisulfate, in the temperature range from 60 to 80 degrees C, was investigated in the presence and absence of sodium formate as an additive to turn the oxidizing capacity of the reaction mixture into a reductive one. Trichloroacetic acid, TCA, whose degradation by a reductive mechanism is well reported in the literature, was used as a probe. The chemistry of thermally activated peroxydisulfate is described by a reaction scheme involving free radical generation. The proposed mechanism is evaluated by a computer simulation of the concentration profiles obtained under different experimental conditions. In the presence of formate, SO(4)(center dot-) radicals yield CO(2)(center dot-), which are the main species available for degrading TCA. Under the latter conditions, TCA is more efficiently depleted than in the absence of formate, but otherwise identical conditions of temperature and [S(2)O(8)(2-)]. We therefore conclude that activated peroxydisulfate in the presence of formate as an additive is a convenient method for the mineralization of substrates that are refractory to oxidation. such as perchlorinated hydrocarbons and TCA. This method has the advantage that leaves no toxic residues. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper present the possible alternative options for the remove of trace elements from drinking water supplies in the trace. Arsenic and chromium are two of the most toxic pollutants, introduced into natural waters from a variety of sources and causing various adverse effects on living bodies. The performance of three filter bed methods was evaluated in the laboratory. Experiments were conducted to investigate the sorption of arsenic and chromium on carbon steel and removal of trace elements from drinking water with a household filtration process. The affinity of the arsenic and chromium species for Fe / Fe3C (iron / iron carbide) sites is the key factor controlling the removal of the elements. The method is based on the use of powdered block carbon, powder carbon steel and ceramic spheres in the ion-sorption columns as a cleaning process. The modified powdered block carbon is a satisfactory and economical sorbent for trace elements (arsenite and chromate) dissolved in water due to its low unit cost of about $23 and compatibility with the traditional household filtration system.