947 resultados para ACTIN
Resumo:
The mechanical vibration properties of single actin filaments from 50 to 288 nm are investigated by the molecular dynamics simulation in this study. The natural frequencies obtained from the molecular simulations agree with those obtained from the analytical solution of the equivalent Euler–Bernoulli beam model. Through the convergence study of the mechanical properties with respect to the filament length, it was found that the Euler–Bernoulli beam model can only be reliably used when the single actin filament is of the order of hundreds of nanometre scale. This molecular investigation not only provides the evidence for the use of the continuum beam model in characterising the mechanical properties of single actin filaments, but also clarifies the criteria for the effective use of the Euler–Bernoulli beam model.
Real-time measurement of F-Actin remodelling during exocytosis using lifeact-EGFP transgenic animals
Resumo:
F-actin remodelling is essential for a wide variety of cell processes. It is important in exocytosis, where F-actin coats fusing exocytic granules. The purpose of these F-actin coats is unknown. They may be important in stabilizing the fused granules, they may play a contractile role and promote expulsion of granule content and finally may be important in endocytosis. To elucidate these functions of F-actin remodelling requires a reliable method to visualize F-actin dynamics in living cells. The recent development of Lifeact-EGFP transgenic animals offers such an opportunity. Here, we studied the characteristics of exocytosis in pancreatic acinar cells obtained from the Lifeact-EGFP transgenic mice. We show that the time-course of agonist-evoked exocytic events and the kinetics of each single exocytic event are the same for wild type and Lifeact-EGFP transgenic animals. We conclude that Lifeact-EGFP animals are a good model to study of exocytosis and reveal that F-actin coating is dependent on the de novo synthesis of F-actin and that development of actin polymerization occurs simultaneously in all regions of the granule. Our insights using the Lifeact-EGFP mice demonstrate that F-actin coating occurs after granule fusion and is a granule-wide event.
Resumo:
Expression of caveolin-1 is up-regulated in prostate cancer metastasis and is associated with aggressive recurrence of the disease. Intriguingly, caveolin-1 is also secreted from prostate cancer cell lines and has been identified in secreted prostasomes. Caveolin-1 is the major structural component of the plasma membrane invaginations called caveolae. Co-expression of the coat protein Polymerase I and transcript release factor (PTRF) is required for caveolae formation. We recently found that expression of caveolin-1 in the aggressive prostate cancer cell line PC-3 is not accompanied by PTRF, leading to noncaveolar caveolin-1 lipid rafts. Moreover, ectopic expression of PTRF in PC-3 cells sequesters caveolin-1 into caveolae. Here we quantitatively analyzed the effect of PTRF expression on the PC-3 proteome using stable isotope labeling by amino acids in culture and subcellular proteomics. We show that PTRF reduced the secretion of a subset of proteins including secreted proteases, cytokines, and growth regulatory proteins, partly via a reduction in prostasome secretion. To determine the cellular mechanism accounting for the observed reduction in secreted proteins we analyzed total membrane and the detergent-resistant membrane fractions. Our data show that PTRF expression selectively impaired the recruitment of actin cytoskeletal proteins to the detergent-resistant membrane, which correlated with altered cholesterol distribution in PC-3 cells expressing PTRF. Consistent with this, modulating cellular cholesterol altered the actin cytoskeleton and protein secretion in PC-3 cells. Intriguingly, several proteins that function in ER to Golgi trafficking were reduced by PTRF expression. Taken together, these results suggest that the noncaveolar caveolin-1 found in prostate cancer cells generates a lipid raft microenvironment that accentuates secretion pathways, possibly at the step of ER sorting/exit. Importantly, these effects could be modulated by PTRF expression.
Resumo:
BACKGROUND: Cell shape and tissue architecture are controlled by changes to junctional proteins and the cytoskeleton. How tissues control the dynamics of adhesion and cytoskeletal tension is unclear. We have studied epithelial tissue architecture using 3D culture models and found that adult primary prostate epithelial cells grow into hollow acinus-like spheroids. Importantly, when co-cultured with stroma the epithelia show increased lateral cell adhesions. To investigate this mechanism further we aimed to: identify a cell line model to allow repeatable and robust experiments; determine whether or not epithelial adhesion molecules were affected by stromal culture; and determine which stromal signalling molecules may influence cell adhesion in 3D epithelial cell cultures. METHODOLOGY/PRINCIPAL FINDINGS: The prostate cell line, BPH-1, showed increased lateral cell adhesion in response to stroma, when grown as 3D spheroids. Electron microscopy showed that 9.4% of lateral membranes were within 20 nm of each other and that this increased to 54% in the presence of stroma, after 7 days in culture. Stromal signalling did not influence E-cadherin or desmosome RNA or protein expression, but increased E-cadherin/actin co-localisation on the basolateral membranes, and decreased paracellular permeability. Microarray analysis identified several growth factors and pathways that were differentially expressed in stroma in response to 3D epithelial culture. The upregulated growth factors TGFβ2, CXCL12 and FGF10 were selected for further analysis because of previous associations with morphology. Small molecule inhibition of TGFβ2 signalling but not of CXCL12 and FGF10 signalling led to a decrease in actin and E-cadherin co-localisation and increased paracellular permeability. CONCLUSIONS/SIGNIFICANCE: In 3D culture models, paracrine stromal signals increase epithelial cell adhesion via adhesion/cytoskeleton interactions and TGFβ2-dependent mechanisms may play a key role. These findings indicate a role for stroma in maintaining adult epithelial tissue morphology and integrity.
Resumo:
The actin microfilament plays a critical role in many cellular processes including embryonic development, wound healing, immune response, and tissue development. It is commonly organized in the form of networks whose mechanical properties change with changes in their architecture due to cell evolution processes. This paper presents a new nonlinear continuum mechanics model of single filamentous actin (F-actin) that is based on nanoscale molecular simulations. Following this continuum model of the single F-actin, mechanical properties of differently architected lamellipodia are studied. The results provide insight that can contribute to the understanding of the cell edge motions of living cells.
Resumo:
Filopodial protrusion initiates cell migration, which decides the fate of cells in biological environments. In order to understand the structural stability of ultra-slender filopodial protrusion, we have developed an explicit modeling strategy that can study both static and dynamic characteristics of microfilament bundles. Our study reveals that the stability of filopodial protrusions is dependent on the density of F-actin crosslinkers. This cross-linkage strategy is a requirement for the optimization of cell structures, resulting in the provision and maintenance of adequate bending stiffness and buckling resistance while mediating the vibration. This cross-linkage strategy explains the mechanical stability of filopodial protrusion and helps understand the mechanisms of mechanically induced cellular activities.
Resumo:
The biosafety of carbon nanomaterial needs to be critically evaluated with both experimental and theoretical validations before extensive biomedical applications. In this letter, we present an analysis of the binding ability of two dimensional monolayer carbon nanomaterial on actin by molecular simulation to understand their adhesive characteristics on F-actin cytoskeleton. The modelling results indicate that the positively charged carbon nanomaterial has higher binding stability on actin. Compared to crystalline graphene, graphene oxide shows higher binding influence on actin when carrying positive surface charge. This theoretical investigation provides insights into the sensitivity of actin-related cellular activities on carbon nanomaterial.
Resumo:
We write in response to the letter by Liu et al. [1] commenting on our article, ‘‘Mesenchymal Stem Cells Regulate Angiogenesis According to Their Mechanical Environment’’ [2]. The study by Liu et al. demonstrates that the commonly used endogeneous reference gene (ERG), b-actin, is upregulated by mechanical loading, indicating a potential bias in the determined target gene expression when normalizing to b-actin, such as in our report on unchanged vascular endothelial growth factor (VEGF) and hypoxia-inducible factors (HIF)-1a mRNA levels in mechanically loaded mesenchymal stem cells (MSCs).
Resumo:
BACKGROUND Tubulointerstitial lesions, characterized by tubular injury, interstitial fibrosis and the appearance of myofibroblasts, are the strongest predictors of the degree and progression of chronic renal failure. These lesions are typically preceded by macrophage infiltration of the tubulointerstitium, raising the possibility that these inflammatory cells promote progressive renal disease through fibrogenic actions on resident tubulointerstitial cells. The aim of the present study, therefore, was to investigate the potentially fibrogenic mechanisms of interleukin-1beta (IL-1beta), a macrophage-derived pro-inflammatory cytokine, on human proximal tubule cells (PTC). METHODS Confluent, quiescent, passage 2 PTC were established in primary culture from histologically normal segments of human renal cortex (N = 11) and then incubated in serum- and hormone-free media supplemented with either IL-1beta (0 to 4 ng/mL) or vehicle (control). RESULTS IL-1beta significantly enhanced fibronectin secretion by up to fourfold in a time- and concentration-dependent fashion. This was accompanied by significant (2.5- to 6-fold) increases in alpha-smooth muscle actin (alpha-SMA) expression, transforming growth factor beta (TGF-beta1) secretion, nitric oxide (NO) production, NO synthase 2 (NOS2) mRNA and lactate dehydrogenase (LDH) release. Cell proliferation was dose-dependently suppressed by IL-1beta. NG-methyl-l-arginine (L-NMMA; 1 mmol/L), a specific inhibitor of NOS, blocked NO production but did not alter basal or IL-1beta-stimulated fibronectin secretion. In contrast, a pan-specific TGF-beta neutralizing antibody significantly blocked the effects of IL-1beta on PTC fibronectin secretion (IL-1beta, 268.1 +/- 30.6 vs. IL-1beta+alphaTGF-beta 157.9 +/- 14.4%, of control values, P < 0.001) and DNA synthesis (IL-1beta 81.0 +/- 6.7% vs. IL-1beta+alphaTGF-beta 93.4 +/- 2.1%, of control values, P < 0.01). CONCLUSION IL-1beta acts on human PTC to suppress cell proliferation, enhance fibronectin production and promote alpha-smooth muscle actin expression. These actions appear to be mediated by a TGF-beta1 dependent mechanism and are independent of nitric oxide release.
Resumo:
Bladder cancer is associated with high recurrence and mortality rates due to metastasis. The elucidation of metastasis suppressors may offer therapeutic opportunities if their mechanisms of action can be elucidated and tractably exploited. In this study, we investigated the clinical and functional significance of the transcription factor activating transcription factor 3 (ATF3) in bladder cancer metastasis. Gene expression analysis revealed that decreased ATF3 was associated with bladder cancer progression and reduced survival of patients with bladder cancer. Correspondingly, ATF3 overexpression in highly metastatic bladder cancer cells decreased migration in vitro and experimental metastasis in vivo. Conversely, ATF3 silencing increased the migration of bladder cancer cells with limited metastatic capability in the absence of any effect on proliferation. In keeping with their increased motility, metastatic bladder cancer cells had increased numbers of actin filaments. Moreover, ATF3 expression correlated with expression of the actin filament severing protein gelsolin (GSN). Mechanistic studies revealed that ATF3 upregulated GSN, whereas ATF3 silencing reduced GSN levels, concomitant with alterations in the actin cytoskeleton. We identified six ATF3 regulatory elements in the first intron of the GSN gene confirmed by chromatin immunoprecipitation analysis. Critically, GSN expression reversed the metastatic capacity of bladder cancer cells with diminished levels of ATF3. Taken together, our results indicate that ATF3 suppresses metastasis of bladder cancer cells, at least in part through the upregulation of GSN-mediated actin remodeling. These findings suggest ATF3 coupled with GSN as prognostic markers for bladder cancer metastasis.
Resumo:
Background A feature of epithelial to mesenchymal transition (EMT) relevant to tumour dissemination is the reorganization of actin cytoskeleton/focal contacts, influencing cellular ECM adherence and motility. This is coupled with the transcriptional repression of E-cadherin, often mediated by Snail1, Snail2 and Zeb1/δEF1. These genes, overexpressed in breast carcinomas, are known targets of growth factor-initiated pathways, however it is less clear how alterations in ECM attachment cross-modulate to regulate these pathways. EGF induces EMT in the breast cancer cell line PMC42-LA and the kinase inhibitor staurosporine (ST) induces EMT in embryonic neural epithelial cells, with F-actin de-bundling and disruption of cell-cell adhesion, via inhibition of aPKC. Methods PMC42-LA cells were treated for 72 h with 10 ng/ml EGF, 40 nM ST, or both, and assessed for expression of E-cadherin repressor genes (Snail1, Snail2, Zeb1/δEF1) and EMT-related genes by QRT-PCR, multiplex tandem PCR (MT-PCR) and immunofluorescence +/- cycloheximide. Actin and focal contacts (paxillin) were visualized by confocal microscopy. A public database of human breast cancers was assessed for expression of Snail1 and Snail2 in relation to outcome. Results When PMC42-LA were treated with EGF, Snail2 was the principal E-cadherin repressor induced. With ST or ST+EGF this shifted to Snail1, with more extreme EMT and Zeb1/δEF1 induction seen with ST+EGF. ST reduced stress fibres and focal contact size rapidly and independently of gene transcription. Gene expression analysis by MT-PCR indicated that ST repressed many genes which were induced by EGF (EGFR, CAV1, CTGF, CYR61, CD44, S100A4) and induced genes which alter the actin cytoskeleton (NLF1, NLF2, EPHB4). Examination of the public database of breast cancers revealed tumours exhibiting higher Snail1 expression have an increased risk of disease-recurrence. This was not seen for Snail2, and Zeb1/δEF1 showed a reverse correlation with lower expression values being predictive of increased risk. Conclusion ST in combination with EGF directed a greater EMT via actin depolymerisation and focal contact size reduction, resulting in a loosening of cell-ECM attachment along with Snail1-Zeb1/δEF1 induction. This appeared fundamentally different to the EGF-induced EMT, highlighting the multiple pathways which can regulate EMT. Our findings add support for a functional role for Snail1 in invasive breast cancer.
Resumo:
The metastatic process requires changes in tumor cell adhesion properties, cell motility and remodeling of the extracellular matrix. The erbB2 proto-oncogene is overexpressed in approximately 30% of breast cancers and is a major prognostic parameter when present in invasive disease. A ligand for the erbB2 receptor has not yet been identified but it can be activated by heterodimerization with heregulin (HRG)-stimulated erbB3 and erbB4 receptors. The HRGs are a family of polypeptide growth factors that have been shown to play a role in embryogenesis, tumor formation, growth and differentiation of breast cancer cells. The erbB3 and erbB4 receptors are involved in transregulation of erbB2 signaling. The work presented here suggests biological roles for HRG including regulation of the actin cytoskeleton and induction of motility and invasion in breast cancer cells. HRG-expressing breast cancer cell lines are characterized by low erbB receptor levels and a high invasive and metastatic index, while those which overexpress erbB2 demonstrate minimal invasive potential in vitro and are non-tumorigenic in vivo. Treatment of the highly tumorigenic and metastatic HRG-expressing breast cancer cell line MDA-MB-231 with an HRG-neutralizing antibody significantly inhibited proliferation in culture and motility in the Boyden chamber assay. Addition of exogenous HRG to non-invasive erbB2 overexpressing cells (SKBr-3) at low concentrations induced formation of pseudopodia, enhanced phagocytic activity and increased chemomigration and invasion in the Boyden chamber assay. The specificity of the chemomigration response to HRG is demonstrated by inhibition with the anti-HRG neutralizing antibody. These results suggest that either HRG can act as an autocrine or paracrine ligand to promote the invasive behavior of breast cancer cells in vitro or thus may enhance the metastatic process in vivo.
Resumo:
A model of crosslinker unbinding is implemented in a highly coarsegrained granular model of F-actin cytoskeleton. We employ this specific granular model to study the mechanisms of the compressive responses of F-actin networks. It is found that the compressive response of F-actin cytoskeleton has dependency on the strain rate. The evolution of deformation energy in the network indicates that crosslinker unbinding events can induce the remodelling of F-actin cytoskeleton in response to external loadings. The internal stress in F-actin cytoskeleton can efficiently dissipate with the help of crosslinker unbinding, which could lead to the spontaneous relaxation of living cells.