361 resultados para ACCELERATORS
Resumo:
When radiation therapy centres are equipped with two or more linear accelerators from the same vendor, they are usually beam-matched. This work tested the sensitivity of optically stimulated luminescence dosimeters (OSLDs) across matched linear accelerators. The responses were compared with an unshielded diode detector for varying field sizes. Clinical studies are currently done with thermoluminescent dosimeters (TLD), which absorb radiation then emit some levels of light determined by the radiation absorption when heated.
Resumo:
The StreamIt programming model has been proposed to exploit parallelism in streaming applications oil general purpose multicore architectures. The StreamIt graphs describe task, data and pipeline parallelism which can be exploited on accelerators such as Graphics Processing Units (GPUs) or CellBE which support abundant parallelism in hardware. In this paper, we describe a novel method to orchestrate the execution of if StreamIt program oil a multicore platform equipped with an accelerator. The proposed approach identifies, using profiling, the relative benefits of executing a task oil the superscalar CPU cores and the accelerator. We formulate the problem of partitioning the work between the CPU cores and the GPU, taking into account the latencies for data transfers and the required buffer layout transformations associated with the partitioning, as all integrated Integer Linear Program (ILP) which can then be solved by an ILP solver. We also propose an efficient heuristic algorithm for the work-partitioning between the CPU and the GPU, which provides solutions which are within 9.05% of the optimal solution on an average across the benchmark Suite. The partitioned tasks are then software pipelined to execute oil the multiple CPU cores and the Streaming Multiprocessors (SMs) of the GPU. The software pipelining algorithm orchestrates the execution between CPU cores and the GPU by emitting the code for the CPU and the GPU, and the code for the required data transfers. Our experiments on a platform with 8 CPU cores and a GeForce 8800 GTS 512 GPU show a geometric mean speedup of 6.94X with it maximum of 51.96X over it single threaded CPU execution across the StreamIt benchmarks. This is a 18.9% improvement over it partitioning strategy that maps only the filters that cannot be executed oil the GPU - the filters with state that is persistent across firings - onto the CPU.
Resumo:
201 p.
Resumo:
Recent vacuum system development with an XHV condition for the particle accelerators is briefly described. The progress of selecting and treatment of the materials used in XHV systems is introduced, and the choice of the main pump for an XHV system and some new pumping method are presented. Some leak detection experiences both for the superconducting and warm vacuum systems are recommended and the status of XHV measurement and the gauge calibration are introduced.
Resumo:
The main ion-beam acceleration facilities and research activities at the Institute of Modern Physics (IMP), Chinese Academy of Sciences are briefly introduced. Some of the biomedical research with heavy ions such as heavy-ion biological effect, basic research related to heavy-ion cancer therapy and radiation breeding at the IMP accelerators are presented.
Resumo:
The relation between the input impedance and the characteristic parameters of a cavity, such as the resonance frequency, shunt impedance and. the quality factor, has been obtained based on the equivalent circuit of the cavity and the coupling system. Using the matching condition, the ratio of coupling capacitance to the equivalent capacitance of the cavity can be acquired as a function of the characteristic parameters of the cavity, the value of the coupling capacitance can be obtained with a help of a numerical simulation and the perturbation theory, and then the perfect matching between the cavity and the transmission line can be procured. The application of these results on a model cavity is presented too.
Resumo:
The main ion beams acceleration facilities and research fields of the Institute of Modern Physics (IMP) are briefly introduced. Some of the experimental instruments, typical works and the obtained results on the materials research with swift heavy ions at the IMP-accelerators are presented.
Resumo:
With the rapid growth of the Internet and digital communications, the volume of sensitive electronic transactions being transferred and stored over and on insecure media has increased dramatically in recent years. The growing demand for cryptographic systems to secure this data, across a multitude of platforms, ranging from large servers to small mobile devices and smart cards, has necessitated research into low cost, flexible and secure solutions. As constraints on architectures such as area, speed and power become key factors in choosing a cryptosystem, methods for speeding up the development and evaluation process are necessary. This thesis investigates flexible hardware architectures for the main components of a cryptographic system. Dedicated hardware accelerators can provide significant performance improvements when compared to implementations on general purpose processors. Each of the designs proposed are analysed in terms of speed, area, power, energy and efficiency. Field Programmable Gate Arrays (FPGAs) are chosen as the development platform due to their fast development time and reconfigurable nature. Firstly, a reconfigurable architecture for performing elliptic curve point scalar multiplication on an FPGA is presented. Elliptic curve cryptography is one such method to secure data, offering similar security levels to traditional systems, such as RSA, but with smaller key sizes, translating into lower memory and bandwidth requirements. The architecture is implemented using different underlying algorithms and coordinates for dedicated Double-and-Add algorithms, twisted Edwards algorithms and SPA secure algorithms, and its power consumption and energy on an FPGA measured. Hardware implementation results for these new algorithms are compared against their software counterparts and the best choices for minimum area-time and area-energy circuits are then identified and examined for larger key and field sizes. Secondly, implementation methods for another component of a cryptographic system, namely hash functions, developed in the recently concluded SHA-3 hash competition are presented. Various designs from the three rounds of the NIST run competition are implemented on FPGA along with an interface to allow fair comparison of the different hash functions when operating in a standardised and constrained environment. Different methods of implementation for the designs and their subsequent performance is examined in terms of throughput, area and energy costs using various constraint metrics. Comparing many different implementation methods and algorithms is nontrivial. Another aim of this thesis is the development of generic interfaces used both to reduce implementation and test time and also to enable fair baseline comparisons of different algorithms when operating in a standardised and constrained environment. Finally, a hardware-software co-design cryptographic architecture is presented. This architecture is capable of supporting multiple types of cryptographic algorithms and is described through an application for performing public key cryptography, namely the Elliptic Curve Digital Signature Algorithm (ECDSA). This architecture makes use of the elliptic curve architecture and the hash functions described previously. These components, along with a random number generator, provide hardware acceleration for a Microblaze based cryptographic system. The trade-off in terms of performance for flexibility is discussed using dedicated software, and hardware-software co-design implementations of the elliptic curve point scalar multiplication block. Results are then presented in terms of the overall cryptographic system.
Resumo:
Multicore computational accelerators such as GPUs are now commodity components for highperformance computing at scale. While such accelerators have been studied in some detail as stand-alone computational engines, their integration in large-scale distributed systems raises new challenges and trade-offs. In this paper, we present an exploration of resource management alternatives for building asymmetric accelerator-based distributed systems. We present these alternatives in the context of a capabilities-aware framework for data-intensive computing, which uses an enhanced implementation of the MapReduce programming model for accelerator-based clusters, compared to the state of the art. The framework can transparently utilize heterogeneous accelerators for deriving high performance with low programming effort. Our work is the first to compare heterogeneous types of accelerators, GPUs and a Cell processors, in the same environment and the first to explore the trade-offs between compute-efficient and control-efficient accelerators on data-intensive systems. Our investigation shows that our framework scales well with the number of different compute nodes. Furthermore, it runs simultaneously on two different types of accelerators, successfully adapts to the resource capabilities, and performs 26.9% better on average than a static execution approach.