951 resultados para ACCELERATED ATHEROSCLEROSIS
Resumo:
Abstract OBJECTIVE: Accelerated atherosclerosis and premature coronary heart disease (CHD) are recognized complications of systemic lupus erythematosus (SLE), but the exact etiology remains unclear and is likely to be multifactorial. We hypothesized that SLE patients with CHD have increased exposure to traditional risk factors as well as differing disease phenotype and therapy-related factors compared to SLE patients free of CHD. Our aim was to examine risk factors for development of clinical CHD in SLE in the clinical setting. METHODS: In a UK-wide multicenter retrospective case-control study we recruited 53 SLE patients with verified clinical CHD (myocardial infarction or angina pectoris) and 96 SLE patients without clinical CHD. Controls were recruited from the same center as the case and matched by disease duration. Charts were reviewed up to time of event for cases, or the same "dummy-date" in controls. RESULTS: SLE patients with clinical CHD were older at the time of event [mean (SD) 53 (10) vs 42 (10) yrs; p
Resumo:
Previously, researchers have speculated that genetic engineering can improve the long-term function of vascular grafts which are prone to atherosclerosis and occlusion. In this study, we demonstrated that an intraoperative gene therapy approach using antisense oligodeoxynucleotide blockage of medial smooth muscle cell proliferation can prevent the accelerated atherosclerosis that is responsible for autologous vein graft failure. Selective blockade of the expression of genes for two cell cycle regulatory proteins, proliferating cell nuclear antigen and cell division cycle 2 kinase, was achieved in the smooth muscle cells of rabbit jugular veins grafted into the carotid arteries. This alteration of gene expression successfully redirected vein graft biology away from neointimal hyperplasia and toward medial hypertrophy, yielding conduits that more closely resembled normal arteries. More importantly, these genetically engineered grafts proved resistant to diet-induced atherosclerosis. These findings establish the feasibility of developing genetically engineered bioprostheses that are resistant to failure and better suited to the long-term treatment of occlusive vascular disease.
Resumo:
This paper addresses the consequences of diabetes and obesity, diseases that have become epidemic in our society, particularly in the past 20 years. Specifically, it summarizes current knowledge about some of the risk factors and mechanisms for the vascular complications of diabetes. These complications can be broadly divided into microvascular disease, such as diabetic retinopathy and diabetic nephropathy, and macrovascular disease, such as accelerated atherosclerosis, and they are the main cause for morbidity and premature mortality among diabetic patients. The roles of hyperglycemia, dyslipidemia and dyslipoproteinemia, oxidative stress, and endothelial dysfunction will be considered. Finally, the "treatment gap" will be addressed. This gap refers to our failure to achieve currently accepted goals to reduce established risk factors for complications in the clinical management of diabetic patients.
Resumo:
The association between poor metabolic control and the microvascular complications of diabetes is now well established, but the relationship between long-term metabolic control and the accelerated atherosclerosis of diabetes is as yet poorly defined. Hyperglycemia is the standard benchmark by which metabolic control is assessed. One mechanism by which elevated glucose levels may mediate vascular injury is through early and advanced glycation reactions affecting a wide variety of target molecules. The "glycation hypothesis'' has developed over the past 30 years, evolving gradually into a "carbonyl stress hypothesis'' and taking into account not only the modification of proteins by glucose, but also the roles of oxidative stress, a wide range of reactive carbonyl-containing intermediates (derived not only from glucose but also from lipids), and a variety of extra- and intracellular target molecules. The final products of these reactions may now be termed "Either Advanced Glycation or Lipoxidation End-Products'' or "EAGLEs.'' The ubiquity of carbonyl stress within the body, the complexity of the reactions involved, the variety of potential carbonyl intermediates and target molecules and their differing half-lives, and the slow development of the complications of diabetes all pose major challenges in dissecting the significance of these processes. The extent of the reactions tends to correlate with overall metabolic control, creating pitfalls in the interpretation of associative data. Many animal and cell culture studies, while supporting the hypothesis, must be viewed with caution in terms of relevance to human diabetes. In this article, the development of the carbonyl stress hypothesis is reviewed, and implications for present and future treatments to prevent complications are discussed.
Resumo:
Risk factors for the microvascular complications (nephropathy and retinopathy) of Type 1 and Type 2 diabetes mellitus and the associated accelerated atherosclerosis include: age, diabetes duration, genetic factors, hyperglycaemia, hypertension, smoking, inflammation, glycation and oxidative stress and dyslipoproteinaemia. Hypertriglyceridaemia, low HDL and small dense LDL are common features of Type 2 diabetes and Type 1 diabetes with poor glycaemic control or renal complications. With the expansion of knowledge and of clinical and research laboratory tools, a broader definition of 'lipid' abnormalities in diabetes is appropriate. Dyslipoproteinaemia encompasses alterations in lipid levels, lipoprotein subclass distribution, composition (including modifications such as non-enzymatic glycation and oxidative damage), lipoprotein-related enzymes, and receptor interactions and subsequent cell signaling. Alterations occur in all lipoprotein classes; chylomicrons, VLDL, LDL, HDL, and Lp(a). There is also emerging evidence implicating lipoprotein related genotypes in the development of diabetic nephropathy and retinopathy. Lipoprotein related mechanisms associated with damage to the cardiovascular system may also be relevant to damage to the renal and ocular microvasculature. Adverse tissue effects are mediated by both alterations in lipoprotein function and adverse cellular responses. Recognition and treatment of lipoprotein-related risk factors, supported by an increasing array of assays and therapeutic agents, may facilitate early recognition and treatment of high complication risk diabetic patients. Further clinical and basic research, including intervention trials, is warranted to guide clinical practice. Optimal lipoprotein management, as part of a multi-faceted approach to diabetes care, may reduce the excessive personal and economic burden of microvascular complications and the related accelerated atherosclerosis.
Resumo:
The chronic vascular complications of diabetes (nephropathy, retinopathy and accelerated atherosclerosis) are a major cause of morbidity and premature mortality. In spite of the more widespread availability of intensive diabetes management, approximately one in three people with diabetes develop aggressive complications and over 70% die of atherosclerosis-related diseases. Genetic and acquired factors are likely to be contributory. Potential mediators of vascular damage may include the interrelated processes of lipoprotein abnormalities, glycation, oxidation and endothelial dysfunction. Lipoprotein abnormalities encompass alterations in lipid concentrations, lipoprotein composition and subclass distribution and lipoprotein-related enzymes. Nonenzymatic glycation and oxidative damage to lipoproteins, other proteins and to vascular structures may also be deleterious. As atherosclerosis is a chronic condition commencing in youth, and because clinical events may be silent in diabetes, surrogate measures of vascular disease are important for early identification of diabetic patients with or at high risk of vascular damage, and for monitoring efficacy of interventions. The increasing array of biochemical assays for markers and mediators of vascular damage, noninvasive measures of vascular health, and therapeutic options should enable a reduction in the excessive personal and economic burden of vascular disease in type 1 and type 2 diabetes.
Resumo:
Modifications of extant plasma proteins, structural proteins,and other macromolecules are enhanced in diabetes because of increased glycation (secondary to increased glucose concentrations) and perhaps because of increased oxidative stress, Increased glycation is present from the time of onset of diabetes, but the relation between diabetes and oxidative stress is less clear: increased oxidative stress may occur later in the course of disease, as vascular damage becomes established, or it may be a feature of uncomplicated diabetes, The combined effects of protein modification by glycation and oxidation may contribute to the development of accelerated atherosclerosis in diabetes and to the development of microvascular complications, Thus, even if not increased by diabetes, variations in oxidative stress may modulate the consequences of hyperglycemia in individual diabetic patients, In this review, the close interaction between glycation and oxidative processes is discussed, and the theme is developed that the most significant modifications of proteins are the result of interactions with reactive carbonyl groups, While glucose itself contains a carbonyl group that is involved in the initial glycation reaction, the most important and reactive carbonyls are formed by free radical-oxidation reactions damaging either carbohydrates (including glucose itself) or lipids, The resulting carbonyl-containing intermediate products then modify proteins, yielding "glycoxidation" and "lipoxidation" products, respectively, This common pathway for glucose and lipid-mediated stress, which may contribute to diabetic complications, is the basis for the carbonyl stress hypothesis for the development of diabetic complications.
Resumo:
Objective Metabolic syndrome (MetS) is highly prevalent in rheumatic diseases and is recognized as a new independent cardiovascular risk factor. This study was undertaken to determine the clinical significance of MetS in patients with primary antiphospholipid syndrome (APS). Methods Seventy-one primary APS patients and 73 age- and sex-matched healthy controls were included. Serum samples were tested for lipid profile, Lp(a), glucose, insulin, thyroid-stimulating hormone, free T4, erythrocyte sedimentation rate, C-reactive protein level, and uric acid. MetS was defined by the International Diabetes Federation criteria, and insulin resistance was established using the homeostasis model assessment index. Results The prevalence of MetS was 33.8%, and further comparison between primary APS patients with and without MetS revealed that the former had a higher frequency of arterial events (79.2% versus 42.6%; P = 0.003), angina (29.2% versus 2.1%; P = 0.002), and positive lupus anticoagulant antibody (95.8% versus 76.6%; P = 0.049). In addition, primary APS patients with MetS, as expected, had a higher prevalence of cardiovascular risk factors. On multivariate analysis, only MetS was independently associated with arterial events in primary APS. Conclusion Coexistence of primary APS and MetS seems to identify a subgroup of patients with higher risk of arterial events, suggesting that MetS may aggravate existing endothelial abnormalities of primary APS.
Resumo:
Objective. To evaluate the efficacy of a 3-month exercise training program in counteracting the chronotropic incompetence and delayed heart rate recovery in patients with systemic lupus erythematosus (SLE). Methods. A 12-week randomized trial was conducted. Twenty-four inactive SLE patients were randomly assigned into 2 groups: trained (T; n = 15, 3-month exercise program) and nontrained (NT; n = 13). A sex-, body mass index-, and age-matched healthy control (C) group (n = 8) also underwent the exercise program. Subjects were assessed at baseline and at 12 weeks after training. Main measurements included the chronotropic reserve (CR) and the heart rate (HR) recovery (Delta HRR) as defined by the difference between HR at peak exercise and at both the first (Delta HRR1) and second (Delta HRR2) minutes after the exercise test. Results. Neither the NT SLE patients nor the C group presented any change in the CR or in Delta HRR1 and Delta HRR2 (P > 0.05). The exercise training program was effective in promoting significant increases in CR (P = 0.007, effect size [ES] 1.15) and in Delta HRR1 and Delta HRR2 (P = 0.009, ES 1.12 and P = 0.002, ES 1.11, respectively) in the SLE T group when compared with the NT group. Moreover, the HR response in SLE patients after training achieved parameters comparable to the C group, as evidenced by the analysis of variance and by the Z score analysis (P > 0.05, T versus C). Systemic Lupus Erythematosus Disease Activity Index scores remained stable throughout the study. Conclusion. A 3-month exercise training program was safe and capable of reducing the chronotropic incompetence and the delayed Delta HRR observed in physically inactive SLE patients.
Resumo:
Viral infection is known to play a role in type I diabetes, but there is a paucity of information on the role of viruses in type 2 diabetes. This research examined the seroprevalence of selected viruses in a group of predominantly Mexican-American patients with End Stage Renal Disease (ESRD). Using a case control design, patients with type 2 diabetes were compared with a group of non-diabetic controls. ^ One hundred and thirteen patients, 83 with type 2 diabetes and 30 controls without diabetes, underwent hemodialysis at the same chronic dialysis facility in San Antonio, Texas. AD subjects were tested for IgG, IgM, and neutralizing antibodies against Coxsackie B viruses (CBV), and IgG and IgM antibodies against cytomegalovirus (CMV) and parvovirus B19 (PVB19). Hepatitis B virus antigen (HBVAg), Hepatitis B virus antibody (HBVAb), Hepatitis C virus antibody (HCVAb), and Rubella (IgG) were also measured. A subset of 91 patients, 66 with diabetes and 25 controls, were tested bimonthly for six months. There was a significant difference (P = 0.04) in the seroprevalence of IgG antibodies to CMV between patients with type 2 diabetes (98%) and non-diabetic controls (87%) in the initial sample (OR = 6.2, 95% CI:1.1–36.0). A greater seroprevalence of CMV IgG antibodies was observed over the six month period among patients with type 2 diabetes (M) compared to controls (84%). This difference was also statistically (P < 0.03), with a greater odds ratio (OR = 12.4, 95% CI: 1.3–116.9), but with larger confidence interval related to the small number of subjects. However, when adjusted for age by logistic regression analysis there was no difference between the groups (OR = 1). ^ After one sample, there was a greater seroprevalence of HCVAb in the group without diabetes (28%), compared to those with type 2 diabetes (10%) (P = 0.04). This difference was no longer significant when adjusted for patient age. The prevalence of antibodies to PVB19, HBSAg, HBV, and Rubella was not significantly different in patients with type 2 diabetes and controls. There were significantly more vascular complications (P < 0.02) among patients with diabetes. ^ These results indicate that the significant associations observed in this population between viral infection with CMV, HCV, and type 2 diabetes are confounded by age. Accelerated atherosclerosis has been associated with age, diabetes, as well as CMV. Latent infection may be a factor that links these processes. ^
Resumo:
Cardiac allograft vasculopathy (CAV) is a form of accelerated atherosclerosis, which represents the leading cause of late morbidity and mortality after heart transplantation. The recent bioresorbable vascular scaffold (BVS) technology represents a potential novel therapeutic tool, in the context of CAV, by allowing transient scaffolding and concomitant vessel healing. Eligible subjects will be treated by using the Absorb Everolimus-Eluting BVS (Abbott Vascular, Santa Clara, CA, USA), and evaluated at pre-determined time points, up to 3 years since the index procedure. Both clinical and imaging data will be collected in dedicated case report forms (CRF). All imaging data will be analyzed in an independent core laboratory. The primary aim of the study is to evaluate the angiographic performance at 1 year of second-generation Absorb BVS, in heart transplant recipients affected by CAV.
Resumo:
We have generated mice with markedly elevated plasma levels of human low density lipoprotein (LDL) and reduced plasma levels of high density lipoprotein. These mice have no functional LDL receptors [LDLR−/−] and express a human apolipoprotein B-100 (apoB) transgene [Tg(apoB+/+)] with or without an apo(a) transgene [Tg(apoa+/−)]. Twenty animals (10 males and 10 females) of each of the following four genotypes were maintained on a chow diet: (i) LDLR−/−, (ii) LDLR−/−;Tg(apoa+/−), (iii) LDLR−/−;Tg(apoB+/+), and (iv)LDLR−/−;Tg(apoB+/+);Tg(apo+/−). The mice were killed at 6 mo, and the percent area of the aortic intimal surface that stained positive for neutral lipid was quantified. Mean percent areas of lipid staining were not significantly different between the LDLR−/− and LDLR−/−;Tg(apoa+/−) mice (1.0 ± 0.2% vs. 1.4 ± 0.3%). However, the LDLR−/−;Tg(apoB+/+) mice had ≈15-fold greater mean lesion area than the LDLR−/− mice. No significant difference was found in percent lesion area in the LDLR−/−;Tg(apoB+/+) mice whether or not they expressed apo(a) [18.5 ± 2.5%, without lipoprotein(a), Lp(a), vs. 16.0 ± 1.7%, with Lp(a)]. Histochemical analyses of the sections from the proximal aorta of LDLR−/−;Tg(apoB+/+) mice revealed large, complex, lipid-laden atherosclerotic lesions that stained intensely with human apoB-100 antibodies. In mice expressing Lp(a), large amounts of apo(a) protein colocalized with apoB-100 in the lesions. We conclude that LDLR−/−; Tg(apoB+/+) mice exhibit accelerated atherosclerosis on a chow diet and thus provide an excellent animal model in which to study atherosclerosis. We found no evidence that apo(a) increased atherosclerosis in this animal model.
Resumo:
The low-density lipoprotein (LDL) receptor plays a central role in mammalian cholesterol metabolism, clearing lipoproteins which bear apolipoproteins E and B-100 from plasma. Mutations in this molecule are associated with familial hypercholesterolemia, a condition which leads to an elevated plasma cholesterol concentration and accelerated atherosclerosis. The N-terminal segment of the LDL receptor contains a heptad of cysteine-rich repeats that bind the lipoproteins. Similar repeats are present in related receptors, including the very low-density lipoprotein receptor and the LDL receptor-related protein/alpha 2-macroglobulin receptor, and in proteins which are functionally unrelated, such as the C9 component of complement. The first repeat of the human LDL receptor has been expressed in Escherichia coli as a glutathione S-transferase fusion protein, and the cleaved and purified receptor module has been shown to fold to a single, fully oxidized form that is recognized by the monoclonal antibody IgG-C7 in the presence of calcium ions. The three-dimensional structure of this module has been determined by two-dimensional NMR spectroscopy and shown to consist of a beta-hairpin structure, followed by a series of beta turns. Many of the side chains of the acidic residues, including the highly conserved Ser-Asp-Glu triad, are clustered on one face of the module. To our knowledge, this structure has not previously been described in any other protein and may represent a structural paradigm both for the other modules in the LDL receptor and for the homologous domains of several other proteins. Calcium ions had only minor effects on the CD spectrum and no effect on the 1H NMR spectrum of the repeat, suggesting that they induce no significant conformational change.
Resumo:
Obesity and the metabolic syndrome have both reached pandemic proportions. Together they have the potential to impact on the incidence and severity of cardiovascular pathologies, with grave implications for worldwide health care systems. The metabolic syndrome is characterized by visceral obesity, insulin resistance, hypertension, chronic inflammation, and thrombotic disorders contributing to endothelial dysfunction and, subsequently, to accelerated atherosclerosis. Obesity is a key component in development of the metabolic syndrome and it is becoming increasingly clear that a central factor in this is the production by adipose cells of bioactive substances that directly influence insulin sensitivity and vascular injury. In this paper, we review advances in the understanding of biologically active molecules collectively referred to as adipokines and how dysregulated production of these factors in obese states mediates the pathogenesis of obesity associated metabolic syndrome.
Resumo:
Chronic kidney disease (CKD) is associated with increased cardiovascular risk in comparison with the general population. This can be observed even in the early stages of CKD, and rises in proportion to the degree of renal impairment. Not only is cardiovascular disease (CVD) more prevalent in CKD, but its nature differs too, with an excess of morbidity and mortality associated with congestive cardiac failure, arrhythmia and sudden death, as well as the accelerated atherosclerosis which is also observed. Conventional cardiovascular risk factors such as hypertension, dyslipidaemia, obesity, glycaemia and smoking, are highly prevalent amongst patients with CKD, although in many of these examples the interaction between risk factor and disease differs from that which exists in normal renal function. Nevertheless, the extent of CVD cannot be fully explained by these conventional risk factors, and non-conventional factors specific to CKD are now recognised to contribute to the burden of CVD. Oxidative stress is a state characterised by excessive production of reactive oxygen species (ROS) and other radical species, a reduction in the capacity of antioxidant systems, and disturbance in normal redox homeostasis with depletion of protective vascular signalling molecules such as nitric oxide (NO). This results in oxidative damage to macromolecules such as lipids, proteins and DNA which can alter their functionality. Moreover, many enzymes are sensitive to redox regulation such that oxidative modification to cysteine thiol groups results in activation of signalling cascades which result in adverse cardiovascular effects such as vascular and endothelial dysfunction. Endothelial dysfunction and oxidative stress are present in association with many conventional cardiovascular risk factors, and can be observed even prior to the development of overt, clinical, vascular pathology, suggesting that these phenomena represent the earliest stages of CVD. In the presence of CKD, there is increased ROS production due to upregulated NADPH oxidase (NOX), increase in a circulating asymmetric dimethylarginine (ADMA), uncoupling of endothelial nitric oxide synthase (eNOS) as well as other mechanisms. There is also depletion in exogenous antioxidants such as ascorbic acid and tocopherol, and a reduction in activity of endogenous antioxidant systems regulated by the master gene regulator Nrf-2. In previous studies, circulating markers of oxidative stress have been shown to be increased in CKD, together with a reduction in endothelial function in a stepwise fashion relating to the severity of renal impairment. Not only is CVD linked to oxidative stress, but the progression of CKD itself is also in part dependent on redox sensitive mechanisms. For example, administration of the ROS scavenger tempol attenuates renal injury and reduces renal fibrosis seen on biopsy in a mouse model of CKD, whilst conversely, supplementation with the NOS inhibitor L-NAME causes proteinuria and renal impairment. Previous human studies examining the effect of antioxidant administration on vascular and renal function have been conflicting however. The work contained in this thesis therefore examines the effect of antioxidant administration on vascular and endothelial function in CKD. Firstly, 30 patients with CKD stages 3 – 5, and 20 matched hypertensive controls were recruited. Participants with CKD had lower ascorbic acid, higher TAP and ADMA, together with higher augmentation index and pulse wave velocity. There was no difference in baseline flow mediated dilatation (FMD) between groups. Intravenous ascorbic acid increased TAP and O2-, and reduced central BP and augmentation index in both groups, and lowered ADMA in the CKD group only. No effect on FMD was observed. The effects of ascorbic acid on kidney function was then investigated, however this was hindered by the inherent drawbacks of existing methods of non-invasively measuring kidney function. Arterial spin labelling MRI is an emerging imaging technique which allows measurement of renal perfusion without administration of an exogenous contrast agent. The technique relies upon application of an inversion pulse to blood within the vasculature proximal to the kidneys, which magnetically labels protons allowing measurement upon transit to the kidney. At the outset of this project local experience using ASL MRI was limited and there ensued a prolonged pre-clinical phase of testing with the aim of optimising imaging strategy. A study was then designed to investigate the repeatability of ASL MRI in a group of 12 healthy volunteers with normal renal function. The measured T1 longitudinal relaxation times and ASL MRI perfusion values were in keeping with those found in the literature; T1 time was 1376 ms in the cortex and 1491 ms in the whole kidney ROI, whilst perfusion was 321 mL/min/100g in the cortex, and 228 mL/min/100g in the whole kidney ROI. There was good reproducibility demonstrated on Bland Altman analysis, with a CVws was 9.2% for cortical perfusion and 7.1% for whole kidney perfusion. Subsequently, in a study of 17 patients with CKD and 24 healthy volunteers, the effects of ascorbic acid on renal perfusion was investigated. Although no change in renal perfusion was found following ascorbic acid, it was found that ASL MRI demonstrated significant differences between those with normal renal function and participants with CKD stages 3 – 5, with increased cortical and whole kidney T1, and reduced cortical and whole kidney perfusion. Interestingly, absolute perfusion showed a weak but significant correlation with progression of kidney disease over the preceding year. Ascorbic acid was therefore shown to have a significant effect on vascular biology both in CKD and in those with normal renal function, and to reduce ADMA only in patients with CKD. ASL MRI has shown promise as a non-invasive investigation of renal function and as a biomarker to identify individuals at high risk of progressive renal impairment.