994 resultados para ACAI PULP
Resumo:
The effects of acai pulp addition and different probiotic bacteria on the fatty acid profile of stirred yoghurt were examined. Skim milk was divided into two groups: one containing acai pulp and another without the fruit. Batches were inoculated with yoghurt starter culture and divided into five groups according to probiotic addition. Counts of viable microorganisms were measured at days 1, 14 and 28 of cold storage. Fatty acid profile was determined by gas chromatography at day 1. Acai pulp favoured an increase in Lactobacillus acidophilus L10, Bifidobacterium animalis ssp. lactis Bl04 and Bifidobacterium longum Bl05 counts at the end of 4 weeks of cold storage. This study demonstrated that acai pulp addition increased monounsaturated and polyunsaturated fatty acid contents in probiotic yoghurt and enhanced the production of cc-linolenic and conjugated linoleic acids during fermentation of skim milk prepared with B. animalis ssp. lactis Bl04 and B94 strains. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Acai, the fruit of a palm native to the Amazonian basin, is widely distributed in northern South America, where it has considerable economic importance. Whereas individual polyphenolics compounds in Acai have been extensively evaluated, studies of the intact fruit and its biological properties are lacking. Therefore, the present study was undertaken to investigate the in vivo genotoxicity of Acai and its possible antigenotoxicity on doxorubicin (DXR)-induced DNA damage. The Acai pulp doses selected were 3.33, 10.0 and 16.67 g/kg b.w. administered by gavage alone or prior to DXR (16 mg/kg b.w.) administered by intraperitoneal injection. Swiss albino mice were distributed in eight groups for acute treatment with acai pulp (24 h) and eight groups for subacute treatment (daily for 14 consecutive days) before euthanasia. The negative control groups were treated in a similar way. The results of chemical analysis suggested the presence of carotenoids, anthocyanins, phenolic. and flavonoids in Acai pulp. The endpoints analyzed were micronucleus induction in bone marrow and peripheral blood cells polychromatic erythrocytes, and DNA damage in peripheral blood, liver and kidney cells assessed using the alkaline (pH > 13) comet assay. There were no statistically significant differences (p > 0.05) between the negative control and the groups treated with the three doses of Acai pulp alone in all endpoints analyzed, demonstrating the absence of genotoxic effects. The protective effects of Acai pulp were observed in both acute and subacute treatments, when administered prior to DXR. In general, subacute treatment provided greater efficiency in protecting against DXR-induced DNA damage in liver and kidney cells. These protective effects can be explained as the result of the phytochemicals present in Acai pulp. These results will be applied to the developmental of food with functional characteristics, as well as to explore the characteristics of Acai as a health promoter. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study aimed to investigate the effects of pectinase enzyme treatment of acai pulp on cross-flow microfiltration (CFMF) performance and on phytochemical and functional characteristics of their compounds. Analyses of fouling mechanisms were carried out through resistance in series and blocking in law models. The enzymatic treatment was conducted using Ultrazym(R) AFPL (Novozymes A/S) at 500 mg kg(-1) of acai pulp for 30 min at 35 degrees C. Before microfiltrations, untreated and enzyme-treated acai pulps were previously diluted in distilled water (1:3; w/v). CFMFs were conducted using commercial alpha-alumina (alpha-Al2O3) ceramic membranes (Andritz AG, Austria) of 0.2 mu m and 0.8 mu m pore sizes, and 0.0047 m(2) of filtration area. The microfiltration unit was operated in batch mode for 120 min at 25 degrees C and the fluid-dynamic conditions were transmembrane pressure of Delta P = 100 kPa and cross-flow velocity of 3 m s(-1) in turbulent flow. The highest values of permeate flux and accumulated permeate volume were obtained using enzyme-treated pulp and 0.2 mu m pore size membranes with steady flux values exceeding 100 L h(-1) m(-2). For the 0.8 mu m pore size membrane, the estimated total resistance after the microfiltration of enzyme-treated acai pulp was 21% lower than the untreated pulp, and for the 0.2 mu m pore size membrane, it was 18%. Cake filtration was the dominant mechanism in the early stages of most of the CFMF processes. After approximately 20 min, however, intermediate pore blocking and complete pore blocking contributed to the overall fouling mechanisms. The reduction of the antioxidant capacity of the permeates obtained after microfiltration of the enzyme-treated pulp was higher (p < 0.01) than that obtained using untreated pulp. For total polyphenols, on the contrary, the permeates obtained after microfiltration of the enzyme-treated pulp showed a lower mean reduction (p < 0.01) than those from the untreated pulp. The results show that the enzymatic treatment had a positive effect on the CFMF process of acai pulp. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Os iogurtes simbióticos, que combinam microrganismos probióticos e substâncias prebióticas, adicionados de polpa de frutas são uma tendência crescente no mercado. O fruto açaí (Euterpe edulis) se destaca pela presença de compostos bioativos, como as antocianinas. Neste contexto, o presente trabalho teve como objetivo caracterizar e avaliar os parâmetros físico-químicos e a viabilidade microbiológica de iogurte simbiótico de açaí enriquecido com inulina e adicionado de cultura probiótica de Bifidobacterium animallis subsp. lactis BB-12. As formulações de iogurte atenderam aos requisitos físico-químicos exigidos pela IN no 46/2007 do MAPA apresentando teor de cinzas de 0,86 % ± 0,10, extrato seco total de 23,18 % ± 2,59, teor de gordura de 4,16 % ± 0,31, acidez de 0,70 % ± 0,05 e pH de 4,45 ± 0,10. Entre as formulações o conteúdo fenólico total variou de 18,17 a 117,84 mg de AGE/100 g, teor de antocianinas de 1,92 a 47,88 mg/100 g e atividade antioxidante de 0,71 a 6,95 μmol Trolox/g, observando-se um aumento de acordo com o aumento do teor de polpa de açaí adicionada. Ao final de 28 dias de armazenamento a 5 °C, observou-se uma redução no teor de antocianinas e da atividade antioxidante. Verificou-se a contribuição positiva da polpa de açaí na viabilidade das bactérias láticas totais, cujas contagens variaram de 4,56 a 7,04 log UFC.g-1 e de B. lactis BB-12 que variou de 3,17 a 6,34 log UFC.g-1, favorecendo a multiplicação dessas bactérias nos iogurtes. Nas formulações com 20 e 25 % de polpa de açaí as contagens das bactérias láticas totais e probiótica mantiveram-se viáveis de acordo com a IN no 46/2007 do MAPA e a Lista de Alegação de Propriedade Funcional (Anvisa), durante os 28 dias de armazenamento a 5 oC. Concluiu-se que a adição de polpa de açaí E. edulis, inulina e B. lactis BB-12 foi tecnologicamente viável na elaboração de iogurte simbiótico de açaí, sendo uma excelente alternativa de diversificação do produto no mercado.
Resumo:
Neste estudo, cromatografia de exclusão por tamanho (SEC) com detecção por UV e detecção off-line por espectrometria de absorção atômica em forno de grafite (GF AAS) foi usada para investigar a associação de cobre a espécies de alta massa molecular (HMW) e baixa massa molecular (LMW) presentes na polpa de açaí (Euterpe oleracea Mart.). A concentração total de cobre obtida nos digeridos da polpa de açaí foi 10,5 µg g-1. Cobre foi encontrado associado às frações de HMW e LMW, correspondentes às massas moleculares de 28,7, 2,6 e 0,43 kDa.
Resumo:
Composite resins are materials that can present color changing when exposed to pigments. Objective: The aim of this study was to evaluate, in vitro, the color changing of composites after immersion in different substances for different periods. Material and methods: Two microhybrid composite resins: Charisma (Heraeus – Kulzer) and Opallis (FGM) were used. Red wine and acai pulp were also used as immersion medium. For this study, 32 specimens with 10 mm of diameter and 2 mm of thickness were used, divided into 4 groups: Group 1 – Opallis composite immersed in red wine solution; Group 2 – Opallis composite immersed in acai berry pulp solution; Group 3 – Charisma composite immersed in red wine solution; Group 4 – Charisma composite immersed in acai berry pulp solution. The specimens were evaluated in the following time periods: T0 – baseline, T1 – 24 hours, T2 – 48 hours, T3 – 72 hours and T4 – 96 hours. For the assessment of staining, a spectrophotometer for colorimetry was used (Color Guide 45 / 0, PCB 6807 BYK-Gardner Gerestsried GmBH, Germany), and the values obtained were transferred to a computer and recorded according to CIELAB system. Results: The data were evaluated using Kruskal- Wallis non-parametric tests with the following mean values for the immersion periods of 24, 48, 72 and 96 hours, respectively: G1 – 7.35, 7.84, 9.04,10.48; G2 – 2.92, 4.15, 4.30, 4.64; G3 – 3.14, 7.35, 8.13, 8.43, G4 – 4.49, 5.99, 6.92, 6.76. Conclusion: Red wine showed a higher tendency toward altering the composite color than acai berry pulp. In addition, no significant difference was found concerning to the behavior of the two composite resins. Concerning to the immersion time periods, significant differences were only observed among the groups in the 24 hour time period.
Resumo:
The consumer interest in healthy foods with high amounts of antioxidants is one of the important factors for reducing the risk of disease and it has encouraged researchers and industry to develop innovative and functional products and ingredients. To that end, the objective of this research was to study the bioactive compounds present in the acai pulp, blueberry and goji berry samples, as well as the phenolic compounds form of extraction using the response surface methodology (RSM), antioxidant and antimicrobial activity of it, identification and quantification of compounds by high-performance liquid chromatography (HPLC) and, at the end, the development of petit suisse cheeses added with freeze-dried extracts of the samples. A 2³ factorial design was used to analyze the solvent effect (ethanol and water), time (30 and 60 min) and temperature (30 °C and 60 °C) on the extraction and determination of total phenolic compounds (TPC) and antioxidant activity (AA). The variables time and temperature had a positive effect on the antioxidant activity (AA) in their highest levels with 60 min and 60 °C respectively. The ethanol solvent 80 % is more efficient in TPC extraction with AA in all arrays. The identification of phenolic compounds performed by HPLC revealed the presence of catechin, epicatechin, rutin, myricetin, chlorogenic acid, coumaric acid and ferulic acid. Regarding the AA the acai pulp showed higher activity in vitro when extracted by 60 °C for 60 min, but none of the three extracts analyzed under these conditions showed antibacterial activity against Staphylococcus aureus and Salmonella bongori in the concentrations tested (95.00 to 2.34 mg/mL. For petit suisse cheeses added with phenolic extract of the samples, the sample containing goji berry achieved greater sensory acceptance among judges (75.67%), second only to the commercial sample used for comparison with 91.56 % of acceptance. In relation to the storage time, the oxidation was evaluated by the level of thiobarbituric acid reactive substances and color analysis. Both analysis were satisfactory, making the extracts addition an alternative to preserve the product properties and give it a high content of bioactive and nutritive compounds.
Resumo:
Revascularization outcome depends on microbial elimination because apical repair will not happen in the presence of infected tissues. This study evaluated the microbial composition of traumatized immature teeth and assessed their reduction during different stages of the revascularization procedures performed with 2 intracanal medicaments. Fifteen patients (7-17 years old) with immature teeth were submitted to the revascularization procedures; they were divided into 2 groups according to the intracanal medicament used: TAP group (n = 7), medicated with a triple antibiotic paste, and CHP group (n = 8), dressed with calcium hydroxide + 2% chlorhexidine gel. Samples were taken before any treatment (S1), after irrigation with 6% NaOCl (S2), after irrigation with 2% chlorhexidine (S3), after intracanal dressing (S4), and after 17% EDTA irrigation (S5). Cultivable bacteria recovered from the 5 stages were counted and identified by means of polymerase chain reaction assay (16S rRNA). Both groups had colony-forming unit counts significantly reduced after S2 (P < .05); however, no significant difference was found between the irrigants (S2 and S3, P = .99). No difference in bacteria counts was found between the intracanal medicaments used (P = .95). The most prevalent bacteria detected were Actinomyces naeslundii (66.67%), followed by Porphyromonas endodontalis, Parvimonas micra, and Fusobacterium nucleatum, which were detected in 33.34% of the root canals. An average of 2.13 species per canal was found, and no statistical correlation was observed between bacterial species and clinical/radiographic features. The microbial profile of infected immature teeth is similar to that of primarily infected permanent teeth. The greatest bacterial reduction was promoted by the irrigation solutions. The revascularization protocols that used the tested intracanal medicaments were efficient in reducing viable bacteria in necrotic immature teeth.
Resumo:
Originally from Asia, Dovyalis hebecarpa is a dark purple/red exotic berry now also produced in Brazil. However, no reports were found in the literature about phenolic extraction or characterisation of this berry. In this study we evaluate the extraction optimisation of anthocyanins and total phenolics in D. hebecarpa berries aiming at the development of a simple and mild analytical technique. Multivariate analysis was used to optimise the extraction variables (ethanol:water:acetone solvent proportions, times, and acid concentrations) at different levels. Acetone/water (20/80 v/v) gave the highest anthocyanin extraction yield, but pure water and different proportions of acetone/water or acetone/ethanol/water (with >50% of water) were also effective. Neither acid concentration nor time had a significant effect on extraction efficiency allowing to fix the recommended parameters at the lowest values tested (0.35% formic acid v/v, and 17.6 min). Under optimised conditions, extraction efficiencies were increased by 31.5% and 11% for anthocyanin and total phenolics, respectively as compared to traditional methods that use more solvent and time. Thus, the optimised methodology increased yields being less hazardous and time consuming than traditional methods. Finally, freeze-dried D. hebecarpa showed high content of target phytochemicals (319 mg/100g and 1,421 mg/100g of total anthocyanin and total phenolic content, respectively).
Resumo:
Teeth are often included in the radiation field during head and neck radiotherapy, and recent clinical evidence suggests that dental pulp is negatively affected by the direct effects of radiation, leading to impaired sensitivity of the dental pulp. Therefore, this study aimed to investigate the direct effects of radiation on the microvasculature, innervation, and extracellular matrix of the dental pulp of patients who have undergone head and neck radiotherapy. Twenty-three samples of dental pulp from patients who finished head and neck radiotherapy were analyzed. Samples were histologically processed and stained with hematoxylin-eosin for morphologic evaluation of the microvasculature, innervation, and extracellular matrix. Subsequently, immunohistochemical analysis of proteins related to vascularization (CD34 and smooth muscle actin), innervation (S-100, NCAM/CD56, and neurofilament), and extracellular matrix (vimentin) of the dental pulp was performed. The morphologic study identified preservation of the microvasculature, nerve bundles, and components of the extracellular matrix in all studied samples. The immunohistochemical analysis confirmed the morphologic findings and showed a normal pattern of expression for the studied proteins in all samples. Direct effects of radiotherapy are not able to generate morphologic changes in the microvasculature, innervation, and extracellular matrix components of the dental pulp in head and neck cancer patients.
Resumo:
SHED (stem cells from human exfoliated deciduous teeth) represent a population of postnatal stem cells capable of extensive proliferation and multipotential differentiation. Primary teeth may be an ideal source of postnatal stem cells to regenerate tooth structures and bone, and possibly to treat neural tissue injury or degenerative diseases. SHED are highly proliferative cells derived from an accessible tissue source, and therefore hold potential for providing enough cells for clinical applications. In this review, we describe the current knowledge about dental pulp stem cells and discuss tissue engineering approaches that use SHED to replace irreversibly inflamed or necrotic pulps with a healthy and functionally competent tissue that is capable of forming new dentin.
Resumo:
This study evaluated in vitro the pulp chamber temperature rise induced by the light-activated dental bleaching technique using different light sources. The root portions of 78 extracted sound human mandibular incisors were sectioned approximately 2 mm below the cementoenamel junction. The root cavities of the crowns were enlarged to facilitate the correct placing of the sensor into the pulp chamber. Half of specimens (n=39) was assigned to receive a 35% hydrogen peroxide gel on the buccal surface and the other halt (n=39) not to receive the bleaching agent. Three groups (n=13) were formed for each condition (bleach or no bleach) according to the use of 3 light sources recommended for dental bleaching: a light-emitting diode (LED)laser system, a LED unit and a conventional halogen light. The light sources were positioned perpendicular to the buccal surface at a distance of 5 mm and activated during 30 s. The differences between the initial and the highest temperature readings for each specimen were obtained, and, from the temperature changes, the means for each specimen and each group were calculated. The values of temperature rise were compared using Kruskal-Wallis test at 1% significance level. Temperature rise varied significantly depending on the light-curing unit, with statistically significant differences (p<0.01) among the groups. When the bleaching agent was not applied, the halogen light induced the highest temperature rise (2.38±0.66ºC). The LED unit produced the lowest temperature increase (0.29±0.13ºC); but there was no significant difference between LED unit and LED-laser system (0.35±0.15ºC) (p>0.01). When the bleaching agent was applied, there were significant differences among groups (p<0.01): halogen light induced the highest temperature rise (1.41±0.64ºC), and LED-laser system the lowest (0.33±0.12ºC); however, there was no difference between LED-laser system and LED unit (0.44±0.11ºC). LED and LED-laser system did not differ significantly from each other regardless the temperature rise occurred with or without bleaching agent application. It may be concluded that during light-activated tooth bleaching, with or without the bleaching agent, halogen light promoted higher pulp chamber temperature rise than LED unit and LED-laser system. The tested light-curing units provided increases in the pulp chamber temperature that were compatible with pulpal health.
Resumo:
Pulp repair is a complex process whose mechanisms are not yet fully understood. The first immune cells to reach the damaged pulp are neutrophils that play an important role in releasing cytokines and in phagocytosis. The objective of this study was to analyze the effect of different pulp-capping materials on the secretion of interleukin-1 beta (IL-1β) and interleukin-8 (IL-8) by migrating human neutrophils. Neutrophils were obtained from the blood of three healthy donors. The experimental groups were calcium hydroxide [Ca(OH)2], an adhesive system (Single Bond), and mineral trioxide aggregate (MTA). Untreated cells were used as control. Transwell chambers were used in performing the assays to mimic an in vivo situation of neutrophil chemotaxis. The pulp-capping materials were placed in the lower chamber and the human neutrophils, in the upper chamber. The cells were counted and the culture medium was assayed using ELISA kits for detecting and quantifying IL-1β and IL8. The data were compared by ANOVA followed by Tukey's test (p < 0.05). The secretion of IL-8 was significantly higher in all groups in comparison to the control group (p < 0.05). The adhesive system group showed higher IL-8 than the MTA group (p < 0.05). The secretion of IL-1β was significantly greater only in the MTA group (p < 0.001). It was concluded that only MTA is able to improve the secretion of IL-1β, and all materials tested increased IL-8 secretion. These results combined with all the other biological advantages of MTA indicate that it could be considered the material of choice for dental pulp capping.
Resumo:
The present work describes non-conventional sisal (Agave sisalana) chemical (organosolv) pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP) fibres were produced by the slurry de-watering and pressing method as a crude simulation of the Hatschek process. Composites were evaluated at 28 days of age, after exposition to accelerated carbonation and after 100 soak/dry cycles. Composites containing organosolv pulp presented lower mechanical strength, water absorption and apparent porosity than composites reinforced with kraft pulp. The best mechanical performance after ageing was also achieved by samples reinforced with kraft pulp. The addition of PP fibres favoured the maintenance of toughness after ageing. Accelerated carbonation promoted the densification of the composites reinforced with sisal organosolv + PP fibres.
Resumo:
Yellow passion fruit pulp is unstable, presenting phase separation that can be avoided by the addition of hydrocolloids. For this purpose, xanthan and guar gum [0.3, 0.7 and 1.0% (w/w)] were added to yellow passion fruit pulp and the changes in the dynamic and steady - shear rheological behavior evaluated. Xanthan dispersions showed a more pronounced pseudoplasticity and the presence of yield stress, which was not observed in the guar gum dispersions. Cross model fitting to flow curves showed that the xanthan suspensions also had higher zero shear viscosity than the guar suspensions, and, for both gums, an increase in temperature led to lower values for this parameter. The gums showed different behavior as a function of temperature in the range of 5 - 35ºC. The activation energy of the apparent viscosity was dependent on the shear rate and gum concentration for guar, whereas for xanthan these values only varied with the concentration. The mechanical spectra were well described by the generalized Maxwell model and the xanthan dispersions showed a more elastic character than the guar dispersions, with higher values for the relaxation time. Xanthan was characterized as a weak gel, while guar presented a concentrated solution behavior. The simultaneous evaluation of temperature and concentration showed a stronger influence of the polysaccharide concentration on the apparent viscosity and the G' and G" moduli than the variation in temperature.