991 resultados para AC voltage source


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Line converters have become an attractive AC/DC power conversion solution in industrial applications. Line converters are based on controllable semiconductor switches, typically insulated gate bipolar transistors. Compared to the traditional diode bridge-based power converters line converters have many advantageous characteristics, including bidirectional power flow, controllable de-link voltage and power factor and sinusoidal line current. This thesis considers the control of the lineconverter and its application to power quality improving. The line converter control system studied is based on the virtual flux linkage orientation and the direct torque control (DTC) principle. A new DTC-based current control scheme is introduced and analyzed. The overmodulation characteristics of the DTC converter are considered and an analytical equation for the maximum modulation index is derived. The integration of the active filtering features to the line converter isconsidered. Three different active filtering methods are implemented. A frequency-domain method, which is based on selective harmonic sequence elimination, anda time-domain method, which is effective in a wider frequency band, are used inharmonic current compensation. Also, a voltage feedback active filtering method, which mitigates harmonic sequences of the grid voltage, is implemented. The frequency-domain and the voltage feedback active filtering control systems are analyzed and controllers are designed. The designs are verified with practical measurements. The performance and the characteristics of the implemented active filtering methods are compared and the effect of the L- and the LCL-type line filteris discussed. The importance of the correct grid impedance estimate in the voltage feedback active filter control system is discussed and a new measurement-based method to obtain it is proposed. Also, a power conditioning system (PCS) application of the line converter is considered. A new method for correcting the voltage unbalance of the PCS-fed island network is proposed and experimentally validated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IIn electric drives, frequency converters are used to generatefor the electric motor the AC voltage with variable frequency and amplitude. When considering the annual sale of drives in values of money and units sold, the use of low-performance drives appears to be in predominant. These drives have tobe very cost effective to manufacture and use, while they are also expected to fulfill the harmonic distortion standards. One of the objectives has also been to extend the lifetime of the frequency converter. In a traditional frequency converter, a relatively large electrolytic DC-link capacitor is used. Electrolytic capacitors are large, heavy and rather expensive components. In many cases, the lifetime of the electrolytic capacitor is the main factor limiting the lifetime of the frequency converter. To overcome the problem, the electrolytic capacitor is replaced with a metallized polypropylene film capacitor (MPPF). The MPPF has improved properties when compared to the electrolytic capacitor. By replacing the electrolytic capacitor with a film capacitor the energy storage of the DC-linkwill be decreased. Thus, the instantaneous power supplied to the motor correlates with the instantaneous power taken from the network. This yields a continuousDC-link current fed by the diode rectifier bridge. As a consequence, the line current harmonics clearly decrease. Because of the decreased energy storage, the DC-link voltage fluctuates. This sets additional conditions to the controllers of the frequency converter to compensate the fluctuation from the supplied motor phase voltages. In this work three-phase and single-phase frequency converters with small DC-link capacitor are analyzed. The evaluation is obtained with simulations and laboratory measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

VSC converters are becoming more prevalent for HVDC applications. Two circuits are commercially available at present, a traditional six-switch, PWM inverter, implemented using series connected IGBTs - ABBs HVDC Light®, and the other a modular multi-level converter (MMC) - Siemens HVDC-PLUS. This paper presents an alternative MMC topology, which utilises a novel current injection technique, and exhibits several desirable characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a comprehensive comparison of a current-source converter and a voltage-source converter for three-phase electric vehicle (EV) fast battery chargers. Taking into account that the current-source converter (CSC) is a natural buck-type converter, the output voltage can assume a wide range of values, which varies between zero and the maximum instantaneous value of the power grid phase-to-phase voltage. On the other hand, taking into account that the voltage-source converter (VSC) is a natural boost-type converter, the output voltage is always greater than the maximum instantaneous value of the power grid phase-to-phase voltage, and consequently, it is necessary to use a dc-dc buck-type converter for applications as EV fast battery chargers. Along the paper is described in detail the principle of operation of both the CSC and the VSC for EV fast chargers, as well as the main equations of the power theory and current control strategies. The comparison between both converters is mainly established in terms of the total harmonic distortion of the grid current and the estimated efficiency for a range of operation between 10 kW and 50 kW.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulsewidth-modulated (PWM) rectifier technology is increasingly used in industrial applications like variable-speed motor drives, since it offers several desired features such as sinusoidal input currents, controllable power factor, bidirectional power flow and high quality DC output voltage. To achieve these features,however, an effective control system with fast and accurate current and DC voltage responses is required. From various control strategies proposed to meet these control objectives, in most cases the commonly known principle of the synchronous-frame current vector control along with some space-vector PWM scheme have been applied. Recently, however, new control approaches analogous to the well-established direct torque control (DTC) method for electrical machines have also emerged to implement a high-performance PWM rectifier. In this thesis the concepts of classical synchronous-frame current control and DTC-based PWM rectifier control are combined and a new converter-flux-based current control (CFCC) scheme is introduced. To achieve sufficient dynamic performance and to ensure a stable operation, the proposed control system is thoroughly analysed and simple rules for the controller design are suggested. Special attention is paid to the estimationof the converter flux, which is the key element of converter-flux-based control. Discrete-time implementation is also discussed. Line-voltage-sensorless reactive reactive power control methods for the L- and LCL-type line filters are presented. For the L-filter an open-loop control law for the d-axis current referenceis proposed. In the case of the LCL-filter the combined open-loop control and feedback control is proposed. The influence of the erroneous filter parameter estimates on the accuracy of the developed control schemes is also discussed. A newzero vector selection rule for suppressing the zero-sequence current in parallel-connected PWM rectifiers is proposed. With this method a truly standalone and independent control of the converter units is allowed and traditional transformer isolation and synchronised-control-based solutions are avoided. The implementation requires only one additional current sensor. The proposed schemes are evaluated by the simulations and laboratory experiments. A satisfactory performance and good agreement between the theory and practice are demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The maximum realizable power throughput of power electronic converters may be limited or constrained by technical or economical considerations. One solution to this problemis to connect several power converter units in parallel. The parallel connection can be used to increase the current carrying capacity of the overall system beyond the ratings of individual power converter units. Thus, it is possible to use several lower-power converter units, produced in large quantities, as building blocks to construct high-power converters in a modular manner. High-power converters realized by using parallel connection are needed for example in multimegawatt wind power generation systems. Parallel connection of power converter units is also required in emerging applications such as photovoltaic and fuel cell power conversion. The parallel operation of power converter units is not, however, problem free. This is because parallel-operating units are subject to overcurrent stresses, which are caused by unequal load current sharing or currents that flow between the units. Commonly, the term ’circulatingcurrent’ is used to describe both the unequal load current sharing and the currents flowing between the units. Circulating currents, again, are caused by component tolerances and asynchronous operation of the parallel units. Parallel-operating units are also subject to stresses caused by unequal thermal stress distribution. Both of these problemscan, nevertheless, be handled with a proper circulating current control. To design an effective circulating current control system, we need information about circulating current dynamics. The dynamics of the circulating currents can be investigated by developing appropriate mathematical models. In this dissertation, circulating current models aredeveloped for two different types of parallel two-level three-phase inverter configurations. Themodels, which are developed for an arbitrary number of parallel units, provide a framework for analyzing circulating current generation mechanisms and developing circulating current control systems. In addition to developing circulating current models, modulation of parallel inverters is considered. It is illustrated that depending on the parallel inverter configuration and the modulation method applied, common-mode circulating currents may be excited as a consequence of the differential-mode circulating current control. To prevent the common-mode circulating currents that are caused by the modulation, a dual modulator method is introduced. The dual modulator basically consists of two independently operating modulators, the outputs of which eventually constitute the switching commands of the inverter. The two independently operating modulators are referred to as primary and secondary modulators. In its intended usage, the same voltage vector is fed to the primary modulators of each parallel unit, and the inputs of the secondary modulators are obtained from the circulating current controllers. To ensure that voltage commands obtained from the circulating current controllers are realizable, it must be guaranteed that the inverter is not driven into saturation by the primary modulator. The inverter saturation can be prevented by limiting the inputs of the primary and secondary modulators. Because of this, also a limitation algorithm is proposed. The operation of both the proposed dual modulator and the limitation algorithm is verified experimentally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel single-phase voltage source rectifier capable to achieve High-Power-Factor (HPF) for variable speed refrigeration system application, is proposed in this paper. The proposed system is composed by a single-phase high-power-factor boost rectifier, with two cells in interleave connection, operating in critical conduction mode, and employing a soft-switching technique, controlled by a Field Programmable Gate Array (FPGA), associated with a conventional three-phase IGBT bridge inverter (VSI - Voltage Source Inverter), controlled by a Digital Signal Processor (DSP). The soft-switching technique for the input stage is based on zero-current-switching (ZCS) cells. The rectifier's features include the reduction in the input current ripple, the reduction in the output voltage ripple, the use of low stress devices, low volume for the EMI input filter, high input power factor (PF), and low total harmonic distortion (THD) in the input current, in compliance with the EEC61000-3-2 standards. The digital controller for the output stage has been developed using a conventional voltage-frequency control (scalar V/f control), and a simplified stator oriented Vector control, in order to verify the feasibility and performance of the proposed digital controls for continuous temperature control applied at a refrigerator prototype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the analysis, design, simulation, and experimental results for a high frequency high Power-Factor (PF) AC (Alternate Current) voltage regulator, using a Sepic converter as power stage. The control technique employed to impose a sinusoidal input current waveform, with low Total Harmonic Distortion (THD), is the sinusoidal variable hysteresis control. The control technique was implemented in a FPGA (Field Programmable Gate Array) device, using a Hardware Description Language (VHDL). Through the use of the proposed control technique, the AC voltage regulator performs active power-factor correction, and low THD in the input current, for linear and non-linear loads, satisfying the requirements of the EEC61000-3-2 standards. Experimental results from an example prototype, designed for 300W of nominal output power, 50kHz (switching frequency), and 127Vrms of nominal input and output voltages, are presented in order to validate the proposed AC regulator. © 2005 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Space Vector PWM implementation and operation for a Four-leg Voltage Source Inverter (VSI) is detailed and discussed in this paper. Although less common, four-leg VSIs are a viable solution for situations where neutral connection is necessary, including Active Power Filter applications. This topology presents advantages regarding the VSI DC link and capacitance, which make it useful for high power devices. Theory, implementation and simulations are also discussed in this paper. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voltage source inverters use large electrolytic capacitors in order to decouple the energy between the utility and the load, keeping the DC link voltage constant. Decreasing the capacitance reduces the distortion in the inverter input current but this also affects the load with low-order harmonics and generate disturbances at the input voltage. This paper applies the P+RES controller to solve the challenge of regulating the output current by means of controlling the magnitude of the current space vector, keeping it constant thus rejecting harmonic disturbances that would otherwise propagate to the load. This work presents a discussion of the switching and control strategy. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the framework of developing defect-based life models, in which breakdown is explicitly associated with partial discharge (PD)-induced damage growth from a defect, ageing tests and PD measurements were carried out in the lab on polyethylene (PE) layered specimens containing artificial cavities. PD activity was monitored continuously during aging. A quasi-deterministic series of stages can be observed in the behavior of the main PD parameters (i.e. discharge repetition rate and amplitude). Phase-resolved PD patterns at various ageing stages were reproduced by numerical simulation which is based on a physical discharge model devoid of adaptive parameters. The evolution of the simulation parameters provides insight into the physical-chemical changes taking place at the dielectric/cavity interface during the aging process. PD activity shows similar time behavior under constant cavity gas volume and constant cavity gas pressure conditions, suggesting that the variation of PD parameters may not be attributed to the variation of the gas pressure. Brownish PD byproducts, consisting of oxygen containing moieties, and degradation pits were found at the dielectric/cavity interface. It is speculated that the change of PD activity is related to the composition of the cavity gas, as well as to the properties of dielectric/cavity interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A MEMS, silicon based device with a cantilever oscillationsand an integrated magnet is presented for magnetic to electrical transduction. The cantilever structure can be configured either as an energy harvester to harvest power from an AC power line or as an AC current sensor. The positioning of the transducer with respect to the AC conductor is critical in both scenarios. For the energy scavenger, correct positioning is required to optimize the harvested power. For the current sensor, it is necessary to optimise the sensitivity of the sensor. This paper considers the effect of the relative position of the transducer with respect to the wire on the resulting electromagnetic forces and torques driving the device. It is shown here that the magnetic torque acting on a cantilever beam with an integrated magnet and in the vicinity of an alternating electromagnetic field is a very significant driver of the cantilever oscillations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An alternative method is presented in this paper to identify the harmonic components of non-linear loads in single phase power systems based on artificial neural networks. The components are identified by analyzing the single phase current waveform in time domain in half-cycle of the ac voltage source. The proposed method is compared to the fast Fourier transform. Simulation and experimental results are presented to validate the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)