988 resultados para AC losses


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-temperature superconductors have created the opportunity for a step change in the technology of power applications. Racetrack superconducting coils made from YBCO coated conductors have been used in several engineering applications including SMES, rotor or stator windings of electric machines. AC loss is one of the most important factors that determine the design and performance of superconducting devices. In this paper, a numerical model is developed to calculate the AC losses in superconducting racetrack coils in different magnetic conditions. This paper first discusses the AC losses of the coils in self-field or external field only. It then goes to investigate the AC losses of the coils being exposed to AC ripple field and a DC background field. Finally, the AC losses of the coils carrying DC current and being exposed to AC field are calculated. These two scenarios correspond to using superconducting coils as the rotor field winding of an electric machine. © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the authors investigate the electromagnetic properties of stacks of high temperature superconductor (HTS) coated conductors with a particular focus on calculating the total transport AC loss. The cross-section of superconducting cables and coils is often modeled as a two-dimensional stack of coated conductors, and these stacks can be used to estimate the AC loss of a practical device. This paper uses a symmetric two dimensional (2D) finite element model based on the H formulation, and a detailed investigation into the effects of a magnetic substrate on the transport AC loss of a stack is presented. The number of coated conductors in each stack is varied from 1 to 150, and three types of substrate are compared: non-magnetic weakly magnetic and strongly magnetic. The non-magnetic substrate model is comparable with results from existing models for the limiting cases of a single tape (Norris) and an infinite stack (Clem). The presence of a magnetic substrate increases the total AC loss of the stack, due to an increased localized magnetic flux density, and the stronger the magnetic material, the further the flux penetrates into the stack overall. The AC loss is calculated for certain tapes within the stack, and the differences and similarities between the losses throughout the stack are explained using the magnetic flux penetration and current density distributions in those tapes. The ferromagnetic loss of the substrate itself is found to be negligible in most cases, except for small magnitudes of current. Applying these findings to practical applications, where AC transport current is involved, superconducting coils should be wound where possible using coated conductors with a non-magnetic substrate to reduce the total AC loss in the coil. © 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper begins with introducing the winding techniques of two superconducting double-pancake coils wound using 2G coated conductors. These winding techniques are able to guarantee a good performance for the superconducting coils. Then the coil critical currents were measured and compared with a simulation model. The results were consistent. Finally the coil AC losses were measured using an experimental circuit including a compensation coil. The simulation results are close to the experiment results. © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of AC losses in superconducting pancake coils is of utmost importance for the development of superconducting devices. Due to different technical difficulties this study is usually performed considering one of two approaches: considering superconducting coils of few turns and studying AC losses in a large frequency range vs. superconducting coils with a large number of turns but measuring AC losses only in low frequencies. In this work, a study of AC losses in 128 turn superconducting coils is performed, considering frequencies ranging from 50 Hz till 1152 Hz and currents ranging from zero till the critical current of the coils. Moreover, the study of AC losses considering two different simultaneous harmonic components is also performed and results are compared to the behaviour presented by the coils when operating in a single frequency regime. Different electrical methods are used to verify the total amount of AC losses in the coil and a simple calorimetric method is presented, in order to measure AC losses in a multi-harmonic context. Different analytical and numerical methods are implemented and/or used, to design the superconducting coils and to compute the total amount of AC losses in the superconducting system and a comparison is performed to verify the advantages and drawbacks of each method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Theoretical and experimental AC loss data on a superconducting pancake coil wound using second generation (2 G) conductors are presented. An anisotropic critical state model is used to calculate critical current and the AC losses of a superconducting pancake coil. In the coil there are two regions, the critical state region and the subcritical region. The model assumes that in the subcritical region the flux lines are parallel to the tape wide face. AC losses of the superconducting pancake coil are calculated using this model. Both calorimetric and electrical techniques were used to measure AC losses in the coil. The calorimetric method is based on measuring the boil-off rate of liquid nitrogen. The electric method used a compensation circuit to eliminate the inductive component to measure the loss voltage of the coil. The experimental results are consistent with the theoretical calculations thus validating the anisotropic critical state model for loss estimations in the superconducting pancake coil. © 2011 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a comparative study of ac magnetization losses in two types of 2 G HTS racetrack coils. The magnetic substrate made by RABiTS is the main difference between the two types, because ferromagnetic loss caused by magnetic substrate is accounted into the total ac losses. IBAD and RABiTS tapes were successfully wound into racetrack shape with identical geometry. The measurements were carried out by using electromagnetic method with pick-up coils under a sinusoidally varying external magnetic field, with amplitudes up to 27 mT, ranging from 10 Hz to 100 Hz at a temperature of 77 K. The field was oriented perpendicularly to the surface of the tapes. Experimental measurements were validated by applying theoretical models and the results showed that the magnetization loss in the MAG RABiTS coil is always higher than that in the NON MAG coil due to the presence of the magnetic substrate, which increases the magnetic field penetration into the coil and causes higher magnetic flux density within the penetrated region. © 2002-2011 IEEE.