990 resultados para AB INITIO METHODS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To obtain a state-of-the-art benchmark potential energy surface (PES) for the archetypal oxidative addition of the methane C-H bond to the palladium atom, we have explored this PES using a hierarchical series of ab initio methods (Hartree-Fock, second-order Møller-Plesset perturbation theory, fourth-order Møller-Plesset perturbation theory with single, double and quadruple excitations, coupled cluster theory with single and double excitations (CCSD), and with triple excitations treated perturbatively [CCSD(T)]) and hybrid density functional theory using the B3LYP functional, in combination with a hierarchical series of ten Gaussian-type basis sets, up to g polarization. Relativistic effects are taken into account either through a relativistic effective core potential for palladium or through a full four-component all-electron approach. Counterpoise corrected relative energies of stationary points are converged to within 0.1-0.2 kcal/mol as a function of the basis-set size. Our best estimate of kinetic and thermodynamic parameters is -8.1 (-8.3) kcal/mol for the formation of the reactant complex, 5.8 (3.1) kcal/mol for the activation energy relative to the separate reactants, and 0.8 (-1.2) kcal/mol for the reaction energy (zero-point vibrational energy-corrected values in parentheses). This agrees well with available experimental data. Our work highlights the importance of sufficient higher angular momentum polarization functions, f and g, for correctly describing metal-d-electron correlation and, thus, for obtaining reliable relative energies. We show that standard basis sets, such as LANL2DZ+ 1f for palladium, are not sufficiently polarized for this purpose and lead to erroneous CCSD(T) results. B3LYP is associated with smaller basis set superposition errors and shows faster convergence with basis-set size but yields relative energies (in particular, a reaction barrier) that are ca. 3.5 kcal/mol higher than the corresponding CCSD(T) values

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After decades of research on molecular excitons, only few molecular dimers are available on which exciton and vibronic coupling theories can be rigorously tested. In centrosymmetric H-bonded dimers consisting of identical (hetero)aromatic chromophores, the monomer electronic transition dipole moment vectors subtract or add, yielding S0 → S1 and S0 → S2 transitions that are symmetry-forbidden or -allowed, respectively. Symmetry breaking by 12C/13C or H/D isotopic substitution renders the forbidden transition weakly allowed. The excitonic coupling (Davydov splitting) can then be measured between the S0 → S1 and S0 → S2 vibrationless bands. We discuss the mass-specific excitonic spectra of five H-bonded dimers that are supersonically cooled to a few K and investigated using two-color resonant two-photon ionization spectroscopy. The excitonic splittings Δcalc predicted by ab initio methods are 5–25 times larger than the experimental excitonic splittings Δexp. The purely electronic ab initio splittings need to be reduced (“quenched”), reflecting the coupling of the electronic transition to the optically active vibrations of the monomers. The so-called quenching factors Γ < 1 can be determined from experiment (Γexp) and/or calculation (Γcalc). The vibronically quenched splittings Γ·Δcalc are found to nicely reproduce the experimental exciton splittings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conformational preferences of thiocarbonohydrazide (H2NNHCSNHNH2) in its basic and N,N′-diprotonated forms are examined by calculating the barrier to internal rotation around the C---N bonds, using the theoretical LCAO—MO (ab initio and semiempirical CNDO and EHT) methods. The calculated and experimental results are compared with each other and also with values for N,N′-dimethylthiourea which is isoelectronic with thiocarbonohydrazide. The suitability of these methods for studying rotational isomerism seems suspect when lone pair interactions are present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer simulations of reaction processes in solution in general rely on the definition of a reaction coordinate and the determination of the thermodynamic changes of the system along the reaction coordinate. The reaction coordinate often is constituted of characteristic geometrical properties of the reactive solute species, while the contributions of solvent molecules are implicitly included in the thermodynamics of the solute degrees of freedoms. However, solvent dynamics can provide the driving force for the reaction process, and in such cases explicit description of the solvent contribution in the free energy of the reaction process becomes necessary. We report here a method that can be used to analyze the solvent contributions to the reaction activation free energies from the combined QM/MM minimum free-energy path simulations. The method was applied to the self-exchange S(N)2 reaction of CH(3)Cl + Cl(-), showing that the importance of solvent-solute interactions to the reaction process. The results were further discussed in the context of coupling between solvent and solute molecules in reaction processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A procedure based on quantum molecular similarity measures (QMSM) has been used to compare electron densities obtained from conventional ab initio and density functional methodologies at their respective optimized geometries. This method has been applied to a series of small molecules which have experimentally known properties and molecular bonds of diverse degrees of ionicity and covalency. Results show that in most cases the electron densities obtained from density functional methodologies are of a similar quality than post-Hartree-Fock generalized densities. For molecules where Hartree-Fock methodology yields erroneous results, the density functional methodology is shown to yield usually more accurate densities than those provided by the second order Møller-Plesset perturbation theory

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conformational preferences of hydrazinecarbothioamide (HCTA, H2NNHCSNH2) in its basic and N-protonated (PHCTA, H3NNNHCSNH2) forms have been studied by 1H and 13C NMR spectroscopy and by theoretical LCAO-MO methods (ab initio, CNDO/2 and EHT). The hindered rotation around the C---N bond has been investigated by a total line shape analysis for the thioamide protons and by the three MO methods. Changes in the molecular conformation and electronic structure on protonation are briefly discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical groups which take part in the proton transfer reaction in bacteriorhodopsin have been studied by ab initio quantum chemical methods. The various factors such as conjugation with a linear system, electron delocalization of the guanidine type, cis-trans isomerism, geometry distortion and hydrogen bonding with charged groups can influence the properties of a given chemical group. Several systems are studied at 4-31G and STO-3G levels. Some of the Schiff-base analogues and guanidine type molecules are characterized by their molecular orbital diagrams, energy levels and the nature of charge distribution. Also, the effects of the above-mentioned factors on proton affinity are studied. It is hoped that the values thus obtained can be helpful in evaluating various structural models for proton transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SCF/DZP and MP2/DZP methods of ab initio quantum chemistry have been utilized to study the structure, vibrational spectra, binding energy, and barrier to internal rotation of methyl isocyanide-borane and acetonitrile-borane adducts. The eclipsed conformation of the complexes was predicted to be a minimum, and the staggered form is a transition state with a barrier height of about 10 cal/mol. The vibrational analyses of CH3NC-BH3 and CH3CN-BH3 and several of their isotopomers have been carried out by the GF matrix method. Computations have also been carried out for free CH3NC and CH3CN in order to investigate the changes in CH3NC and CH3CN as a result of their complex formation with BH3. To obtain an acceptable set of force constants, a recently proposed procedure ''RECOVES'' has been utilized. The increase in the N=C/C=N stretching force constant of CH3NC/CH3CN on adduct formation is interpreted with the help of Parr and Borkman's model. The binding energies for the two adducts have been determined taking basis set superposition error (BSSE) into consideration. The effect of the BSSE on structure, dipole moment, and vibrational frequencies of CH3CN and CH3NC is also evaluated. The predicted infrared band intensities for the two complexes are in good agreement with the experimentally observed features, and they have been utilized in the assignment of vibrational frequencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systematic ab initio molecular orbital studies of the conformational equilibria and vibrational spectra of dipropionamide using the basis sets 6-31g(d) and 6-31++G(d,p) have been carried out. The vibrational spectra of dipropionamide have been satisfactorily interpreted taking into account the agreement between the calculated frequencies, infrared and Raman band intensities and the shifts in the spectra of deuterated molecules with those observed. The previous assignments of most of the vibrational bands are well confirmed, a few bands need reassignment, however. The solvent effects were investigated by self-consistent reaction field theory using dipole and self-consistent isodensity polarized continuum model methods. The introduction of a dielectric medium has only a marginal effect on the conformational equilibria and vibrational spectra. However, the calculated changes in geometry and vibrational spectra on going from the gas phase to the solution phase are in accord with the increasing weight of the dipolar resonance structure in polar solvents. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the electronic structure of ordered and disordered Sr2FeMoO6 using ab initio bandstructure methods. The effect of disorder was simulated within supercell calculations to realize several configurations with mis-site disorders. It is found that such disorder effects destroy the half-metallic ferromagnetic state of the ordered compound. It also leads to a substantial reduction of the magnetic moments at the Fe sites in the disordered configurations. Most interestingly, it is found for the disordered configurations that the magnetic coupling within the Fe sublattice as well as that within the Mo sublattice always remain ferromagnetic, while the two sublattices couple antiferromagnetically, in close analogy to the magnetic structure of the ordered compound, but,in contrast to recent suggestions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports ab intio, DFT and transition state theory (TST) calculations on HF, HCI and CIF elimination reactions from CH2Cl-CH2F molecule. Both the ground state and the transition state for HX elimination reactions have been optimized at HF, MP2 and DFT calculations with 6-31G*, 6-31G** and 6-311++G** basis sets. In addition, CCSD(T) single point calculations were carried out with MP2/6-311++G** optimized geometry for more accurate determination of the energies of the minima and transition state, compared to the other methods employed here. Classical barriers are converted to Arrhenius activation energy by TST calculations for comparisons with experimental results. The pre-exponential factors, A, calculated at all levels of theory are significantly larger than the experimental values. For activation energy, E-a DFT gives good results for HF elimination, within 4-8 W mol(-1) from experimental values. None of the methods employed, including CCSD(T), give comparable results for HCI elimination reactions. However, rate constants calculated by CCSD(T) method are in very good agreement with experiment for HCI elimination and they are in reasonable agreement for HF elimination reactions. Due to the strong correlation between A and E., the rate constants could be fit to a lower A and E-a (as given by experimental fitting, corresponding to a tight TS) or to larger A and E-a (as given by high level ab initio calculations, corresponding to a loose TS). The barrier for CIF elimination is determined to be 607 U mol(-1) at HF level and it is unlikely to be important for CH2FCH2Cl. Results for other CH2X-CH2Y (X,Y = F/Cl) are included for comparison.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen is the only atom for which the Schr odinger equation is solvable. Consisting only of a proton and an electron, hydrogen is the lightest element and, nevertheless, is far from being simple. Under ambient conditions, it forms diatomic molecules H2 in gas phase, but di erent temperature and pressures lead to a complex phase diagram, which is not completely known yet. Solid hydrogen was rst documented in 1899 [1] and was found to be isolating. At higher pressures, however, hydrogen can be metallized. In 1935 Wigner and Huntington predicted that the metallization pressure would be 25 GPa [2], where molecules would disociate to form a monoatomic metal, as alkali metals that lie below hydrogen in the periodic table. The prediction of the metallization pressure turned out to be wrong: metallic hydrogen has not been found yet, even under a pressure as high as 320 GPa. Nevertheless, extrapolations based on optical measurements suggest that a metallic phase may be attained at 450 GPa [3]. The interest of material scientist in metallic hydrogen can be attributed, at least to a great extent, to Ashcroft, who in 1968 suggested that such a system could be a hightemperature superconductor [4]. The temperature at which this material would exhibit a transition from a superconducting to a non-superconducting state (Tc) was estimated to be around room temperature. The implications of such a statement are very interesting in the eld of astrophysics: in planets that contain a big quantity of hydrogen and whose temperature is below Tc, superconducting hydrogen may be found, specially at the center, where the gravitational pressure is high. This might be the case of Jupiter, whose proportion of hydrogen is about 90%. There are also speculations suggesting that the high magnetic eld of Jupiter is due to persistent currents related to the superconducting phase [5]. Metallization and superconductivity of hydrogen has puzzled scientists for decades, and the community is trying to answer several questions. For instance, what is the structure of hydrogen at very high pressures? Or a more general one: what is the maximum Tc a phonon-mediated superconductor can have [6]? A great experimental e ort has been carried out pursuing metallic hydrogen and trying to answer the questions above; however, the characterization of solid phases of hydrogen is a hard task. Achieving the high pressures needed to get the sought phases requires advanced technologies. Diamond anvil cells (DAC) are commonly used devices. These devices consist of two diamonds with a tip of small area; for this reason, when a force is applied, the pressure exerted is very big. This pressure is uniaxial, but it can be turned into hydrostatic pressure using transmitting media. Nowadays, this method makes it possible to reach pressures higher than 300 GPa, but even at this pressure hydrogen does not show metallic properties. A recently developed technique that is an improvement of DAC can reach pressures as high as 600 GPa [7], so it is a promising step forward in high pressure physics. Another drawback is that the electronic density of the structures is so low that X-ray di raction patterns have low resolution. For these reasons, ab initio studies are an important source of knowledge in this eld, within their limitations. When treating hydrogen, there are many subtleties in the calculations: as the atoms are so light, the ions forming the crystalline lattice have signi cant displacements even when temperatures are very low, and even at T=0 K, due to Heisenberg's uncertainty principle. Thus, the energy corresponding to this zero-point (ZP) motion is signi cant and has to be included in an accurate determination of the most stable phase. This has been done including ZP vibrational energies within the harmonic approximation for a range of pressures and at T=0 K, giving rise to a series of structures that are stable in their respective pressure ranges [8]. Very recently, a treatment of the phases of hydrogen that includes anharmonicity in ZP energies has suggested that relative stability of the phases may change with respect to the calculations within the harmonic approximation [9]. Many of the proposed structures for solid hydrogen have been investigated. Particularly, the Cmca-4 structure, which was found to be the stable one from 385-490 GPa [8], is metallic. Calculations for this structure, within the harmonic approximation for the ionic motion, predict a Tc up to 242 K at 450 GPa [10]. Nonetheless, due to the big ionic displacements, the harmonic approximation may not su ce to describe correctly the system. The aim of this work is to apply a recently developed method to treat anharmonicity, the stochastic self-consistent harmonic approximation (SSCHA) [11], to Cmca-4 metallic hydrogen. This way, we will be able to study the e ects of anharmonicity in the phonon spectrum and to try to understand the changes it may provoque in the value of Tc. The work is structured as follows. First we present the theoretical basis of the calculations: Density Functional Theory (DFT) for the electronic calculations, phonons in the harmonic approximation and the SSCHA. Then we apply these methods to Cmca-4 hydrogen and we discuss the results obtained. In the last chapter we draw some conclusions and propose possible future work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The single charge transfer process in He-3(2+)+He-4 collisions is investigated using the quantum-mechanical molecular-orbital close-coupling method, in which the adiabatic potentials and radial couplings are calculated by using the ab initio multireference single- and double-excitation configuration interaction methods. The differential cross sections for the single charge transfer are presented at the laboratorial energies E = 6 keV and 10 keV for the projectile He-3(2+). Comparison with the existing data shows that the present results are better in agreement with the experimental measurements than other calculations in the dominant small angle scattering, which is attributed to the accurate calculations of the adiabatic potentials and the radial couplings.