1000 resultados para A. angulosa d13C


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We carried out oxygen and carbon isotope studies on monospecific foraminifer samples from DSDP Sites 522, 523, and 524 of Leg 73 in the central South Atlantic Ocean. The oxygen isotope ratios show a warming of 2 to 3 °C in bottom water and 5°C in surface water during the Paleocene and early Eocene. The carbon isotope values indicate strong upwelling during the early Eocene. The 1% increase in the d18O values of benthic and planktonic foraminifers at Site 523 in the later middle Eocene we ascribe to changes in the pattern of the evaporation and precipitation. The changes may be due to the worldwide Lutetian transgression. The oxygen ratios for the benthic and planktonic foraminifers indicate a cooling at the Eocene/Oligocene transition. The maximum temperature drop (5°C for benthic and 3°C for planktonic foraminifers) is recorded slightly beyond the Eocene/Oligocene boundary and took place over an interval of about 100,000 yr. The pattern of currents in the Southern Hemisphere was mainly structured by a precursor of the subtropical convergence during the Paleocene to late Eocene. The cooling at the Eocene/Oligocene transition led to drastic changes in the circulation pattern, and a precursor of the Antarctic convergence evolved.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Sea of Okhotsk is a marginal sea of the Pacific Ocean, which is characterized by strong variations in the productivity and sediment supply due to sea ice transport and river input. Furthermore the variations in the hydrological cycle determine the formation of the SOIW (Sea of Okhotsk Intermediate Water) which plays an important role in the ventilation processes in the intermediate water of the N-Pacific. Isotope data measured on planktonic and benthic foraminifera, sedimentological and geochemical studies of sediment cores and surface samples from the Sea of Okhotsk are used to reconstruct the paleoceanography during the past 350.000 years. The dating and correlation of the sediments are based on oxygen isotope stratigraphy, absolute ages, magnetic susceptibility as well as a detailled tephrachronology of the entire basin. The sedimentation rates are characterized by temporal and spatial variations. The maximum sedimentation rate takes place at the continental slope off Sakhalin due to the input of the Amur River, the sea ice drift and the high productivity. The sedimentation rate in the eastern part of the Sea of Okhotsk is generelly high because of the influence of the nutrient-rich Kamchatka Current. In the central and northern parts of the Sea of Okhotsk, areas with low productivity and reduced terrestrial supply, the sedimentation rate is the lowest. The analyses of the surface sediment samples make it possible to characterize the (sub)- recent sediment supply and transportation processes. The bulk sediment measurements, isotope data and the accumulation rate of ice-rafted debris (IRD) show a dominant sea ice cover and a region with a high productivity as well as a high Amur River input in the western part of the sea. The eastern part of the Sea of Okhotsk, however, is marked by the predominance of warm and nutrient-rich water masses coming from the Kamchatka Current which restricts the sea ice cover. This is reflected in low content of ice-rafted debris and high productivity proxies as well as in isotope data. The deposits of the Sea of Okhotsk are characterized by terrestrial, biogenic and volcanogenic sediment input which varies temporally and spatially. Here, the sedimentation pattern is dominated by the terrestrial input. Bulk sediment measurements and sample analyses of the > 63 micron particle input make it possible to distinguish glacial and interglacial fluctuations. The sedimentation processes during glacial times are determined by a high content of ice-rafted debris, whereas the primary production is higher during interglacial periods. During the last glacial/interglacial cycle the IRD-distribution pattern indicates a strong sea ice transport in the western part and in large areas of the open sea in the eastern part of the Sea of Okhotsk with a relatively constant ice-drift system. The IRD flux in sediments of the oxygen isotope Stage 6 reflects a new sedimentation pattern in the eastern part of the sea. This high IRD accumulation rate indicates ice advances beyond the shelf margin and an iceberg transport from NE-E direction into the Sea of Okhotsk. The several large, brief, negative anomalies in d13C values of Neogloboquadrina pachyderma (s) show releases of methane from basin sediments which correspond to periods of relative sea level falls. The high sedimentation rates on the Sakhalin slope allow insights into the climatic history in Holocene and indicate shorter-scale variations oscillation in Stage 3, which correlate with the global climatic changes. These variations are described as Dansgaard-Oeschger cycles in Greenland ice cores and as Heinrich-Events in several marine sediment cores from the N-Atlantic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined near-surface, late Holocene deep-sea sediments at nine sites on a north-south transect from the Congo Fan (4°S) to the Cape Basin (30°S) along the Southwest African continental margin. Contents, distribution patterns and molecular stable carbon isotope signatures of long-chain n-alkanes (C27-C33) and n-alkanols (C22-C32) are indicators of land plant vegetation of different biosynthetic types, which can be correlated with concentrations and distributions of pollen taxa in the same sediments. Calculated clusters of wind trajectories and satellite Aerosol Index imagery afford information on the source areas for the lipids and pollen on land and their transport pathways to the ocean sites. This multidisciplinary approach on an almost continental scale provides clear evidence of latitudinal differences in lipid and pollen composition paralleling the major phytogeographic zonations on the adjacent continent. Dust and smoke aerosols are mainly derived from the western and central South African hinterland dominated by deserts, semi-deserts and savannah regions rich in C4 and CAM plants. The northern sites (Congo Fan area and northern Angola Basin), which get most of their terrestrial material from the Congo Basin and the Angolan highlands, may also receive some material from the Chad region. Very little aerosol from the African continent is transported to the most southerly sites in the Cape Basin. As can be expected from the present position of the phytogeographic zones, the carbon isotopic signatures of the n-alkanes and n-alkanols both become isotopically more enriched in 13C from north to south. The results of the study suggest that this combination of pollen data and compound-specific isotope geochemical proxies can be effectively applied in the reconstruction of past continental phytogeographic developments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the reconstructed pCO2 data from Tree ring cellulose d13C data with estimation errors for 10 sites (location given below) by a geochemical model as given in the publication by Trina Bose, Supriyo Chakraborty, Hemant Borgaonkar, Saikat Sengupta. This data was generated in Stable Isotope Laboratory, Indian Institute of Tropical Meteorology, Pune - 411008, India