999 resultados para A-BETA OLIGOMERIZATION
Resumo:
2,4-Dinitrophenol (DNP) is classically known as a mitochondrial uncoupler and, at high concentrations, is toxic to a variety of cells. However, it has recently been shown that, at subtoxic concentrations, DNP protects neurons against a variety of insults and promotes neuronal differentiation and neuritogenesis. The molecular and cellular mechanisms underlying the beneficial neuroactive properties of DNP are still largely unknown. We have now used DNA microarray analysis to investigate changes in gene expression in rat hippocampal neurons in culture treated with low micromolar concentrations of DNP. Under conditions that did not affect neuronal viability, high-energy phosphate levels or mitochondrial oxygen consumption, DNP induced up-regulation of 275 genes and down-regulation of 231 genes. Significantly, several up-regulated genes were linked to intracellular cAMP signaling, known to be involved in neurite outgrowth, synaptic plasticity, and neuronal survival. Differential expression of specific genes was validated by quantitative RT-PCR using independent samples. Results shed light on molecular mechanisms underlying neuroprotection by DNP and point to possible targets for development of novel therapeutics for neurodegenerative disorders.
Resumo:
beta-Prism I fold lectins constitute one of the five widely occurring structural classes of plant lectins. Each single domain subunit is made up of three Greek key motifs arranged in a threefold symmetric fashion. The threefold symmetry is not reflected in the sequence except in the case of the lectin from banana, a monocot, which carries two sugar-binding sites instead of the one in other lectins of known three-dimensional structure, all from dicots. This is believed to be a consequence of the different evolutionary paths followed by the lectin in monocots and dicots. The galactose-specific lectins among them have two chains produced by posttranslational proteolysis and contain three aromatic residues at the binding site. The extended binding sites of galactose- and mannose-specific lectins have been thoroughly characterized. Ligand binding at the sites involves both conformational selection and induced fit. Molecular plasticity of some of the lectins in the family has been characterized. The plasticity appears to be such as to promote variability in quaternary association which could be dimeric, tetrameric, or octameric. Structural and evolutionary reasons for the variability have been explored, and the relation of oligomerization to ligand binding and conformational selection investigated.
Resumo:
Xyloglucan is a major structural polysaccharide of the primary (growing) cell wall of higher plants. It consists of a cellulosic backbone (beta-1,4-linked glucosyl residues) that is frequently substituted with side chains. This report describes Aspergillus nidulans strain A773 recombinant secretion of a dimeric xyloglucan-specific endo-beta-1,4-glucanohydrolase (XegA) cloned from Aspergillus niveus. The ORF of the A. niveus xegA gene is comprised of 714 nucleotides, and encodes a 238 amino acid protein with a calculated molecular weight of 23.5 kDa and isoelectric point of 4.38. The optimal pH and temperature were 6.0 and 60 degrees C, respectively. XegA generated a xyloglucan-oligosaccharides (XGOs) pattern similar to that observed for cellulases from family GH12, i.e., demonstrating that its mode of action includes hydrolysis of the glycosidic linkages between glucosyl residues that are not branched with xylose. In contrast to commercial lichenase, mixed linkage beta-glucan (lichenan) was not digested by XegA, indicating that the enzyme did not cleave glucan beta-1,3 or beta-1,6 bonds. The far-UV CD spectrum of the purified enzyme indicated a protein rich in beta-sheet structures as expected for GH12 xyloglucanases. Thermal unfolding studies displayed two transitions with mid-point temperatures of 51.3 degrees C and 81.3 degrees C respectively, and dynamic light scattering studies indicated that the first transition involves a change in oligomeric state from a dimeric to a monomeric form. Since the enzyme is a predominantly a monomer at 60 degrees C. the enzymatic assays demonstrated that XegA is more active in its monomeric state. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Chlamydia trachomatis is a bacterial pathogen responsible for one of the most prevalent sexually transmitted infections worldwide. Its unique development cycle has limited our understanding of its pathogenic mechanisms. However, CtHtrA has recently been identified as a potential C. trachomatis virulence factor. CtHtrA is a tightly regulated quality control protein with a monomeric structural unit comprised of a chymotrypsin-like protease domain and two PDZ domains. Activation of proteolytic activity relies on the C-terminus of the substrate allosterically binding to the PDZ1 domain, which triggers subsequent conformational change and oligomerization of the protein into 24-mers enabling proteolysis. This activation is mediated by a cascade of precise structural arrangements, but the specific CtHtrA residues and structural elements required to facilitate activation are unknown. Using in vitro analysis guided by homology modeling, we show that the mutation of residues Arg362 and Arg224, predicted to disrupt the interaction between the CtHtrA PDZ1 domain and loop L3, and between loop L3 and loop LD, respectively, are critical for the activation of proteolytic activity. We also demonstrate that mutation to residues Arg299 and Lys160, predicted to disrupt PDZ1 domain interactions with protease loop LC and strand β5, are also able to influence proteolysis, implying their involvement in the CtHtrA mechanism of activation. This is the first investigation of protease loop LC and strand β5 with respect to their potential interactions with the PDZ1 domain. Given their high level of conservation in bacterial HtrA, these structural elements may be equally significant in the activation mechanism of DegP and other HtrA family members.
Resumo:
The preparation of five different copper(I) complexes [CuSC(=NPh)(OAr)}L(n)]m (1-5) formed by the insertion of PhNCS into the Cu-OAr bond and the crystal structure analyses of three of them have been carried out. A monomeric species 1 (OAr = 2,6-dimethylphenoxide) is formed in the presence of excess PPh3 (n = 2, m = 1) and crystallizes as triclinic crystals with a = 12.419(4) angstrom, b = 13.298(7) angstrom, c = 15.936(3) angstrom, alpha = 67.09(3)-degrees, beta = 81.63(2)-degrees, gamma = 66.54(3)-degrees, V = 2224(2) angstrom3, and Z = 2. The structure was refined by the least-squares method to final R and R(w) values of 0.038 and 0.044, respectively, for 7186 unique reflections. Copper(I) 2,5-di-tert-butyl-4-methylphenoxide results in the formation of a dimeric species 2 in the presence of P(OMe)3 (n = 1, m = 2), where the coordination around Cu is trigonal. Crystals of 2 were found to be orthorhombic with a = 15.691(2) angstrom, b = 18.216(3) angstrom, c = 39.198(5) angstrom, v = 11204(3) angstrom3, and Z = 8. Least-squares refinement gave final residuals of R = 0.05 and R(w) = 0.057 with 6866 unique reflections. A tetrameric species 3 results when PPh3 is replaced by P(OMe)3 in the coordination sphere of copper(I) 2,6-dimethylphenoxide. It crystallizes in the space group P1BAR with a = 11.681 (1) angstrom, b = 13.373(2) angstrom, c = 20.127(1) angstrom, a = 88.55(l)-degrees, beta = 89.65(l)-degrees, gamma = 69.28(1)-degrees, V = 2940(l) angstrom3, and Z = 2. Least-squares refinement of the structure gave final values of 0.043 and 0.05 for R and R(w) respectively using 12214 unique reflections. In addition, a dimeric species 4 is formed when 1 equiv of PPh3 is added to the copper(I) 4-methylphenoxide, while with an excess of PPh3 a monomeric species 5 is isolated. Some interconversions among these complexes are also reported.
Resumo:
Dendritic cells (DCs) as sentinels of the immune system are important for eliciting both primary and secondary immune responses to a plethora of microbial pathogens. Cooperative stimulation of a complex set of pattern-recognition receptors, including TLR2 and nucleotide-binding oligomerization domain (NOD)-like receptors on DCs, acts as a rate-limiting factor in determining the initiation and mounting of the robust immune response. It underscores the need for ``decoding'' these multiple receptor interactions. In this study, we demonstrate that TLR2 and NOD receptors cooperatively regulate functional maturation of human DCs. Intriguingly, synergistic stimulation of TLR2 and NOD receptors renders enhanced refractoriness to TGF-beta- or CTLA-4-mediated impairment of human DC maturation. Signaling perturbation data suggest that NOTCH1-PI3K signaling dynamics assume critical importance in TLR2- and NOD receptor-mediated surmounting of CTLA-4- and TGF-beta -suppressed maturation of human DCs. Interestingly, the NOTCH1-PI3K signaling axis holds the capacity to regulate DC functions by virtue of PKC delta-MAPK-dependent activation of NF-kappa B. This study provides mechanistic and functional insights into TLR2-and NOD receptor-mediated regulation of DC functions and unravels NOTCH1-PI3K as a signaling cohort for TLR2 and NOD receptors. These findings serve in building a conceptual foundation for the design of improved strategies for adjuvants and immunotherapies against infectious diseases.
Resumo:
The crystal structure of a beta-prism II (BP2) fold lectin from Remusatia vivipara, a plant of traditional medicinal value, has been determined at a resolution of 2.4 A. This lectin (RVL, Remusatia vivipara lectin) is a dimer with each protomer having two distinct BP2 domains without a linker between them. It belongs to the ``monocot mannose-binding'' lectin family, which consists of proteins of high sequence and structural similarity. Though the overall tertiary structure is similar to that of lectins from snowdrop bulbs and garlic, crucial differences in the mannose-binding regions and oligomerization were observed. Unlike most of the other structurally known proteins in this family, only one of the three carbohydrate recognition sites (CRSs) per BP2 domain is found to be conserved. RVL does not recognize simple mannose moieties. RVL binds to only N-linked complex glycans like those present on the gp120 envelope glycoprotein of HIV and mannosylated blood proteins like fetuin, but not to simple mannose moieties. The molecular basis for these features and their possible functional implications to understand the different levels of carbohydrate affinities in this structural family have been investigated through structure analysis, modeling and binding studies. Apart from being the first structure of a lectin to be reported from the Araceae/Arum family, this protein also displays a novel mode of oligomerization among BP2 lectins.
Resumo:
Dimeric banana lectin and calsepa, tetrameric artocarpin and octameric heltuba are mannose-specific beta-prism I fold lectins of nearly the same tertiary structure. MD simulations on individual subunits and the oligomers provide insights into the changes in the structure brought about in the protomers on oligomerization, including swapping of the N-terminal stretch in one instance. The regions that undergo changes also tend to exhibit dynamic flexibility during MD simulations. The internal symmetries of individual oligomers are substantially retained during the calculations. Energy minimization and simulations were also carried out on models using all possible oligomers by employing the four different protomers. The unique dimerization pattern observed in calsepa could be traced to unique substitutions in a peptide stretch involved in dimerization. The impossibility of a specific mode of oligomerization involving a particular protomer is often expressed in terms of unacceptable steric contacts or dissociation of the oligomer during simulations. The calculations also led to a rationale for the observation of a heltuba tetramer in solution although the lectin exists as an octamer in the crystal, in addition to providing insights into relations among evolution, oligomerization and ligand binding.
Resumo:
Specific and coordinated regulation of innate immune receptor-driven signaling networks often determines the net outcome of the immune responses. Here, we investigated the cross-regulation of toll-like receptor (TLR)2 and nucleotide-binding oligomerization domain (NOD)2 pathways mediated by Ac2PIM, a tetra-acylated form of mycobacterial cell wall component and muramyl dipeptide (MDP), a peptidoglycan derivative respectively. While Ac2PIM treatment of macrophages compromised their ability to induce NOD2-dependent immunomodulators like cyclooxygenase (COX)-2, suppressor of cytokine signaling (SOCS)-3, and matrix metalloproteinase (MMP)-9, no change in the NOD2-responsive NO, TNF-alpha, VEGF-A, and IL-12 levels was observed. Further, genome-wide microRNA expression profiling identified Ac2PIM-responsive miR-150 and miR-143 to target NOD2 signaling adaptors, RIP2 and TAK1, respectively. Interestingly, Ac2PIM was found to activate the SRC-FAK-PYK2-CREB cascade via TLR2 to recruit CBP/P300 at the promoters of miR-150 and miR-143 and epigenetically induce their expression. Loss-of-function studies utilizing specific miRNA inhibitors establish that Ac2PIM, via the miRNAs, abrogate NOD2-induced PI3K-PKC delta-MAPK pathway to suppress beta-catenin-mediated expression of COX-2, SOCS-3, and MMP-9. Our investigation has thus underscored the negative regulatory role of Ac2PIM-TLR2 signaling on NOD2 pathway which could broaden our understanding on vaccine potential or adjuvant utilities of Ac2PIM and/or MDP.
Resumo:
A series of silica-supported 12-silicotungstic acid catalysts (H4SiW12O40, abbreviated as HSiW), modified with various loadings of Teflon (HSiW/SiO2-Teflon), were prepared by an impregnation method. The surface properties of the catalysts were studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), BET, infrared (IR) spectroscopy, NH3-TPD and the Drop Shape Analysis (DSA). SEM results combined with energy-dispersive X-ray (EDX) measurements of HSiW/SiO2-Teflon revealed that F-compound (Teflon) is effectively coated on the catalyst surface. The contact angles for water and oil of 50 wt% HSiW/SiO2 and HSiW/SiO2-Teflon indicate that HSiW/SiO2-Teflon catalyst enhances not only the surface hydrophobicity but also the surface lipophobicity by means of the addition of Teflon. Silica-supported 12-silicotungstic acid modified with Teflon exhibits higher C-8(=) selectivity and longer lifetime than that of silica-supported 12-silicotungstic acid in isobutene oligomerization. Thus, surface-appropriate lipophobicity of catalysts may be effective for decreasing the interaction between coke precursors and the catalyst surface and for removing deposited coke more easily.
Resumo:
The Transforming Growth Factor-beta (TGFbeta) superfamily of cytokines is comprised of a number of structurally-related, secreted polypeptides that regulate a multitude of cellular processes including proliferation, differentiation and neoplastic transformation. These growth regulatory molecules induce ligand-mediated hetero-oligomerization of distinct type II and type I serine/threonine kinase receptors that transmit signals predominantly through receptor-activated Smad proteins but also induce Smad-independent pathways. Ligands, receptors and intracellular mediators of signaling initiated by members of the TGFbeta family are expressed in the mammary gland and disruption of these pathways may contribute to the development and progression of human breast cancer. Since many facets of TGFbeta and breast cancer have been recently reviewed in several articles, except for discussion of recent developments on some aspects of TGFbeta, the major focus of this review will be on the role of activins, inhibins, BMPs, nodal and MIS-signaling in breast cancer with emphasis on their utility as potential diagnostic, prognostic and therapeutic targets.
Resumo:
The use of animal sera for the culture of therapeutically important cells impedes the clinical use of the cells. We sought to characterize the functional response of human mesenchymal stem cells (hMSCs) to specific proteins known to exist in bone tissue with a view to eliminating the requirement of animal sera. Insulin-like growth factor-I (IGF-I), via IGF binding protein-3 or -5 (IGFBP-3 or -5) and transforming growth factor-beta 1 (TGF-beta(1)) are known to associate with the extracellular matrix (ECM) protein vitronectin (VN) and elicit functional responses in a range of cell types in vitro. We found that specific combinations of VN, IGFBP-3 or -5, and IGF-I or TGF-beta(1) could stimulate initial functional responses in hMSCs and that IGF-I or TGF-beta(1) induced hMSC aggregation, but VN concentration modulated this effect. We speculated that the aggregation effect may be due to endogenous protease activity, although we found that neither IGF-I nor TGF-beta(1) affected the functional expression of matrix metalloprotease-2 or -9, two common proteases expressed by hMSCs. In summary, combinations of the ECM and growth factors described herein may form the basis of defined cell culture media supplements, although the effect of endogenous protease expression on the function of such proteins requires investigation.