996 resultados para 96-616
Resumo:
Eight lithologic facies recognized in the Mississippi Fan sediments drilled during DSDP Leg 96 are defined on the basis of lithology, sedimentary structures, composition, and texture. Of these, the calcareous biogenic sediments are of minor importance, volumetrically, as compared with the dominant resedimented terrigenous facies. Clay, mud, and silt are the most abundant sediments at all the sites drilled, with some sand and gravel in the midfan channel fill and an abundance of sand on the lower fan. Facies distribution and vertical sequences reflect the importance of sediment type and supply in controlling fan development. Sea-level changes and diapiric activity have also played an important role. Clay and sand fraction mineralogy closely mirror the dominant sediment source, namely, the Mississippi River system and adjacent continental shelf. Local and regional variation in composition on the fan mostly reflects facies differences.
Resumo:
We present the measurement of R = B(t -> Wb)/B(t -> Wq) in pp collisions at root s = 1.96 TeV, using 230 pb(-1) of data collected by the DO experiment at the Fermilab Tevatron Collider. We fit simultaneously R and the number (N-tt) of selected top quark pairs (tt), to the number of identified b-quark jets in events with one electron or one muon, three or more jets, and high transverse energy imbalance. To improve sensitivity, kinematical properties of events with no identified b-quark jets are included in the fit. We measure R = 1.03(-0.17)(0.19) (stat + syst), in good agreement with the standard model. We set lower limits of R > 0.61 and vertical bar V-tb vertical bar > 0.78 at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Interstitial water studies were done at 9 of the 11 sites visited in the Mississippi Fan and Orca and Pigmy Basins during DSDP Leg 96. High concentrations of sulfate were observed at Mississippi Fan Sites 616, 617, 620, and 623. The maximum sulfate value of 38.8 mM, recorded at Site 617, is the highest ever found in DSDP sediments. Hypersaline interstitial water was observed at Site 618 in Orca Basin. Concentration ratios of salinity to chlorinity and to sodium in interstitial waters are similar to those of Orca Basin bottom water, suggesting that the chemistry of interstitial water is affected by the dissolution of buried salt.