995 resultados para 90-594
Resumo:
A diatom biostratigraphy is presented for middle Miocene through Quaternary sediments recovered from the Chatham Rise east of New Zealand's South Island. The upper 590 m of the 639.5-m composite-section Site 594 represents approximately 16 m.y. and is characterized by moderately to very poorly preserved diatoms of antarctic to temperate affinity. Pliocene through Quaternary assemblages are poorly preserved and dominated by antarctic-subantarctic species which provide detailed biostratigraphic control. Recognized are 11 of 14 zones of the middle upper Miocene to Quaternary Neogene Southern Ocean diatom zonation (NSD 7-NSD 20) of Ciesielski (1983; this chapter). Four Neogene Southern Ocean diatom zones (NSD 3-NSD 6) are recognized in the lower middle Miocene to middle upper Miocene of Site 594. Assemblages of this interval have a mixed high-latitude and temperate affinity; however, poor preservation limits correlation to high- and temperate-latitude zonal schemes. Neogene North Pacific diatom zones and subzones of NNPD 3 through NNPD 5 (Barron, in press, b) are correlated to Neogene Southern Ocean diatom zones NSD 3 through NSD 7: the upper portions of the Actinocyclus ingens Zone (NNPD 3) is correlative to the upper Nitzschia maleinterpretaria Zone (NSD 3); the Denticulopsis lauta Zone (NNPD 4) and Subzones a and b are correlative to the lower Coscinodiscus lewisianus Zone (NSD 4); and the D. hustedtü-D. lauta Zone (NNPD 5) and its Subzones a through d encompass the upper C. lewisianus Zone (NSD 4), N. grossepunctata Zone (NSD 5), N. denticuloides Zone (NSD 6), and the lower D. hustedtii-D. lauta Zone (NSD 7). A major disconformity spans the late Gilbert to early Gauss Chron (3.9-2.8 Ma). A second disconformity brackets the Miocene/Pliocene boundary; the section missing covers late Chron 5 and the early Gilbert chron (5.5-4.6 Ma). The remainder of the siliceous-fossil-bearing Miocene sediments at Site 594 appear to be correlative to lower paleomagnetic Chronozone 5 through upper Chronozone 16. Uppermost lower Miocene or lowermost middle Miocene sediments in the basal 50 m of Hole 594A are barren of diatoms.
Resumo:
The late Quaternary sequence off eastern South Island, New Zealand, consists of ~100 m of alternating bluish gray pelagic oozes and greenish gray hemipelagic oozes that extend uninterruptedly back to the Brunhes/Matuyama boundary (0.73 m.y.). A very high resolution (~2400 yr.) record of sediment texture, calcium carbonate content, and planktonic and benthic foraminiferal oxygen and carbon isotope composition demonstrates an in-phase cyclical fluctuation between the sedimentary parameters that closely correspond to the pelagic-hemipelagic sedimentation cycles and the isotope composition. Pelagic oozes, formed during interglacial periods of high eustatic sea level, are characterized by calcareous microfossils, relative enrichment in sand and clay sizes, high carbonate contents, reduced delta18O values, and increased delta13C values. Hemipelagic oozes, associated with glacial episodes and lowered eustatic sea level, include common terrigenous material and siliceous microfossils, are enriched in silt sizes, have low carbonate contents, high delta18O values, and low delta13C values. The history of alpine glaciations and associated erosion of the South Island of New Zealand, as expressed by the appearance of hemipelagic oozes, can be correlated directly with the major fluctuations of Northern Hemisphere ice sheets as expressed by the influence of eustatic sea-level changes on the oxygen isotope composition of both planktonic and benthic foraminifers. This high-accumulation-rate record contains conspicuous intervals of highfrequency, high-amplitude isotope variability including the presence of multiple glacial/interglacial intervals within single isotope stages, and offers one of the best sections cored to date for detailed study of the evolution and history of climate change over the last 0.75 m.y.
Resumo:
Detailed sedimentological investigations were performed on sediments from DSDP-Site 594 (Chatham Rise, east of New Zealand) in order to reconstruct the evolution of paleoclimate and paleoceanographic conditions in the Southwest Pacific during the last 6 million years. The results can be summarized as follows: (1) High accumulation rates of biogenic opal and carbonate and the dominance of smectites in the clay fraction suggest increased oceanic productivity and an equable dominantly humid climate during the late Miocene. (2) During Pliocene times, decreasing contents of smectites and increasing feldspar/quartz ratios point to an aridification in the source area of the terrigenous sediments, culmunating near 2.5 Ma. At that time, accumulation rates of terrigenous components distinctly increased probably caused by increased sediment supply due to intensified atmospheric and oceanic circulation, lowered sea level, and decreased vegetation cover. (3) A hiatus (1.45 to 0.73 Ma) suggests intensified intermediate-water circulation. (4) Major glacial/interglacial cycles characterize the upper 0.73 Ma. During glacial times, oceanic productivity and terrigenous sediment supply was distinctly increased because of intensified atmospheric and oceanic circulations and lowered sea level, whereas during interglacials productivity and terrigenous sediment supply were reduced. (5) An increased content of amphibols in the sediments of Site 594 indicates increased volcanic activities during the last 4.25 Ma.
Resumo:
Date-32 is a fast and easily used computer program developed to date Quaternary deep-sea cores by associating variations in the earth's orbit with recurring oscillations in core properties, such as carbonate content or isotope composition. Starting with known top and bottom dates, distortions in the periodicities of the core properties due to varying sedimentation rates are realigned by fast Fourier analysis so as to maximise the spectral energy density at the orbital frequencies. This allows age interpolation to all parts of the core to an accuracy of 10 kyrs, or about 1.5% of the record duration for a typical Brunhes sequence. The influence of astronomical forcing is examined and the method is applied to provide preliminary dates in a high-resolution Brunhes record from DSDP Site 594 off southeastern New Zealand.