808 resultados para 862
Resumo:
EPON 862 is an epoxy resin which is cured with the hardening agent DETDA to form a crosslinked epoxy polymer and is used as a component in modern aircraft structures. These crosslinked polymers are often exposed to prolonged periods of temperatures below glass transition range which cause physical aging to occur. Because physical aging can compromise the performance of epoxies and their composites and because experimental techniques cannot provide all of the necessary physical insight that is needed to fully understand physical aging, efficient computational approaches to predict the effects of physical aging on thermo-mechanical properties are needed. In this study, Molecular Dynamics and Molecular Minimization simulations are being used to establish well-equilibrated, validated molecular models of the EPON 862-DETDA epoxy system with a range of crosslink densities using a united-atom force field. These simulations are subsequently used to predict the glass transition temperature, thermal expansion coefficients, and elastic properties of each of the crosslinked systems for validation of the modeling techniques. The results indicate that glass transition temperature and elastic properties increase with increasing levels of crosslink density and the thermal expansion coefficient decreases with crosslink density, both above and below the glass transition temperature. The results also indicate that there may be an upper limit to crosslink density that can be realistically achieved in epoxy systems. After evaluation of the thermo-mechanical properties, a method is developed to efficiently establish molecular models of epoxy resins that represent the corresponding real molecular structure at specific aging times. Although this approach does not model the physical aging process, it is useful in establishing a molecular model that resembles the physically-aged state for further use in predicting thermo-mechanical properties as a function of aging time. An equation has been predicted based on the results which directly correlate aging time to aged volume of the molecular model. This equation can be helpful for modelers who want to study properties of epoxy resins at different levels of aging but have little information about volume shrinkage occurring during physical aging.
Resumo:
Epoxies find variety of applications and during these applications they get exposed to different conditions like elevated temperatures, hydrothermal, chemical, etc. It has been observed that properties of epoxies do get affected substantially if exposed to these conditions for extended period of time and because of the variety of applications, researchers found it necessary to study their effects on the thermal, mechanical, physical and chemical properties. However in this report the focus is on studying effects of physical aging on mechanical properties of EPON 862 with DETDA as its curing agent, where physical aging is aging is the condition which occurs due to exposure to elevated temperatures. A fair amount of computational work has been performed on EPON 862- DETDA to study the effects of physical aging, however very little known work has been done experimentally to study these effects. Young’s modulus, hardness, failure strength, strain to failure, density and glass transition are the properties which have been obtained using various experimental methods - tensile testing, nanoindentation and differential scanning calorimetry. Experimental work on other epoxies have shown no increase or very slight increase in the Young’s modulus and hardness with increased aging time, also decrease in failure strength and strain to failure and through this work on EPON 862- DETDA we can observe similar trends.
Resumo:
u.a. Heinrich von Lowtzow;
Resumo:
"February 1967."
Resumo:
The thermoset epoxy resin EPON 862, coupled with the DETDA hardening agent, are utilized as the polymer matrix component in many graphite (carbon fiber) composites. Because it is difficult to experimentally characterize the interfacial region, computational molecular modeling is a necessary tool for understanding the influence of the interfacial molecular structure on bulk-level material properties. The purpose of this research is to investigate the many possible variables that may influence the interfacial structure and the effect they will have on the mechanical behavior of the bulk level composite. Molecular models are established for EPON 862-DETDA polymer in the presence of a graphite surface. Material characteristics such as polymer mass-density, residual stresses, and molecular potential energy are investigated near the polymer/fiber interface. Because the exact degree of crosslinking in these thermoset systems is not known, many different crosslink densities (degrees of curing) are investigated. It is determined that a region exists near the carbon fiber surface in which the polymer mass density is different than that of the bulk mass density. These surface effects extend ~10 Å into the polymer from the center of the outermost graphite layer. Early simulations predict polymer residual stress levels to be higher near the graphite surface. It is also seen that the molecular potential energy in polymer atoms decreases with increasing crosslink density. New models are then established in order to investigate the interface between EPON 862-DETDA polymer and graphene nanoplatelets (GNPs) of various atomic thicknesses. Mechanical properties are extracted from the models using Molecular Dynamics techniques. These properties are then implemented into micromechanics software that utilizes the generalized method of cells to create representations of macro-scale composites. Micromechanics models are created representing GNP doped epoxy with varying number of graphene layers and interfacial polymer crosslink densities. The initial micromechanics results for the GNP doped epoxy are then taken to represent the matrix component and are re-run through the micromechanics software with the addition of a carbon fiber to simulate a GNP doped epoxy/carbon fiber composite. Micromechanics results agree well with experimental data, and indicate GNPs of 1 to 2 atomic layers to be highly favorable. The effect of oxygen bonded to the surface of the GNPs is lastly investigated. Molecular Models are created for systems with varying graphene atomic thickness, along with different amounts of oxygen species attached to them. Models are created for graphene containing hydroxyl groups only, epoxide groups only, and a combination of epoxide and hydroxyl groups. Results show models of oxidized graphene to decrease in both tensile and shear modulus. Attaching only epoxide groups gives the best results for mechanical properties, though pristine graphene is still favored.
Resumo:
Entrepreneurial marketing has gained popularity in both the entrepreneurship and marketing disciplines in recent times. The success of ventures that have pursued what are considered non-traditional marketing approaches has been attributed to entrepreneurial marketing practices. Despite the multitude of marketing concepts and models, there are prominent venture successes that do not conform to these and have thus been put in the ''entrepreneurial'' box. One only has to look to the ''Virgin'' model to put this in context. Branson has proven for example that not ''sticking to the knitting'' can work with the ways the Virgin portfolio has been diversified. Consequently, an entrepreneurial orientation is considered a desirable philosophy and has become prominent in such industries as airlines and information technology. Miles and Arnold (1991) found that entrepreneurial orientation is positively correlated to marketing orientation. They propose that entrepreneurial orientation is a strategic response by firms to turbulence in the environment. While many marketing successes are analysed in hindsight using traditional marketing concepts and strategies, there are those that challenge standard marketing textbook recommendations. Marketing strategy is often viewed as a process of targeting, segmenting and positioning (STP). Academics and consultants advocate this approach along with the marketing and business plans. The reality however is that a number of businesses do not practice these and pursue alternative approaches. Other schools of thought and business models have been developing to explain differences in orientation such as branding (Keller 2001), the service-dominant logic (Vargo and Lusch 2004) and effectuation logic (Sarasvathy 2001). This indicates that scholars are now looking to cognate fields to explain a given phenomenon beyond their own disciplines. Bucking this trend is a growing number of researchers working at the interface between entrepreneurship and marketing. There is now an emerging body of work dedicated to this interface, hence the development of entrepreneurial marketing as an alternative to the traditional approaches. Hills and Hultman (2008:3) define entrepreneurial marketing as ''a spirit, an orientation as well as a process of passionately pursuing opportunities and launching and growing ventures that create perceived customer value through relationships by employing innovativeness, creativity, selling, market immersion, networking and flexibility.'' Although it started as a special interest group, entrepreneurial marketing is now gaining recognition in mainstream entrepreneurship and marketing literature. For example new marketing textbooks now incorporate an entrepreneurial marketing focus (Grewal and Levy 2008). The purpose of this paper is to explore what entrepreneurial approaches are used by entrepreneurs and their impact on the success of marketing activities. Methodology/Key Propositions In order to investigate this, we employ two cases: 42Below, vodka producers from New Zealand and Penderyn Distillery, whisky distillers from Wales. The cases were chosen based on the following criteria. Firstly, both companies originate from small economies. Secondly, both make products (spirits) from locations that are not traditionally regarded as producers of their flagship products and thirdly, the two companies are different from each other in terms of their age. Penderyn is an old company established in 1882, whereas 42Below was founded only in 1999. Vodka has never been associated with New Zealand. By the same token, whisky has always been associated with Scotland and Ireland but never been with Wales. Both companies defied traditional stereotypes in marketing their flagship products and found international success. Using a comparative a case study approach, we use Covin and Slevin's (1989) set of items that purport to measure entrepreneurial orientation and apply a qualitative lens on the approaches of both companies. These are: 1. cultural emphases on innovation and R&D 2. high rate of new product introduction 3. bold, innovative product development 4. initiator proactive posture 5. first to introduce new technologies and products 6. competitive posture toward competitor 7. strong prolictivity for high risk, high return projects 8. environment requires boldness to achieve objectives 9. when faced with risk, adopts aggressive, bold posture. Results and Implications We find that both companies have employed entrepreneurial marketing approaches but with different intensities. While acknowledging that they are different from the norm, the specifics of their individual approaches are dissimilar. Both companies have positioned their products at the premium end of their product categories and have emphasised quality and awards in their communication strategies. 42Below has carved an image of irreverence and being non-conformist. They have unashamedly utilised viral marketing and entered international markets by training bartenders and hosting unconventional events. They use edgy language such as vodka university, vodka professors and vodka ambassadors. Penderyn Distillery has taken a more traditional approach to marketing its products and portraying romantic images of age-old tradition of distilling as key to their positioning. Both companies enjoy success as evidenced by industry awards and international acclaim.