994 resultados para 799
Resumo:
abgedruckt in: Schopenhauer-Jahrbuch 61 (1980), S. 138-139
Resumo:
Miocene to Quaternary sediments from the Oki Ridge (Site 798) and the Kita-Yamato Trough (Site 799) in the Japan Sea contain organic carbon ranging from about 0.6% in light-colored layers to almost 6% in dark layers. The organic matter consists of a variable mixture of marine and terrigenous contributions, the ratio of which is not correlated to the total organic carbon content. Marine organic particles clearly dominate in the deeper section of Hole 799B. The extractable bitumen is strongly dominated by long-chain alkenones from microalgae in the shallower sediments, whereas bishomohopanoic acid (C32) of eubacterial origin is the single most abundant compound in deeper samples. Normal alkanes and straight-chain carboxylic acids, both of which show a bimodal distribution with odd and even carbon-number predominance, respectively, are two other groups of compounds which are important constituents of the extracts. The deepest samples at Site 799 contain a considerable amount of short-chain components, which probably migrated upward from thermally more altered deeper sediments.
Resumo:
57Fe Mössbauer spectra for 26 sediment and 6 carbonate concretion samples from Sites 798 and 799 were recorded at 293 K. Most spectra were deconvolved to two quadrupole doublets without magnetic hyperfine structure. Typical Mössbauer parameters were: isomer shift (I.S.) = 0.34 mm/s and quadrupole splitting (Q.S.) = 0.64 mm/s for the paramagnetic Fe3+ component (partly, pyrite); I.S. = 1.13 mm/s and Q.S. = 2.64 mm/s for the high-spin Fe2+ component derived from iron-bearing aluminosilicates. A few spectra included other high-spin Fe2+ components ascribed to iron-bearing carbonate minerals (e.g., ferroan magnesite), according to the Mössbauer parameters for Fe2+ in the carbonate concretions. We present the distribution of iron among different chemical forms as a function of depth. These data might indicate changes of depositional and diagenetic conditions.
Resumo:
Nineteen trace elements, including seven rare earth elements (REE's), and 10 major and minor elements in 76 sediment samples from Sites 798 (Oki Ridge) and 799 (Yamato Trough) were determined by means of instrumental neutron activation analysis and X-ray fluorescence spectrometry. Most REE patterns (chondrite-normalized) of the sediments from both sites were nearly identical to the patterns of terrigenous materials. The cerium anomaly (slightly positive) frequently appeared in REE patterns of the sediments (200-750 mbsf) from Site 799. Cerium may be selectively incorporated into the sediments with hydrogenous manganese precipitation. However, the degree of the anomaly was not well correlated with manganese content, suggesting that cerium may behave as a trivalent REE (like the other REE's) during diagenesis while manganese is transported in the sediment column accompanied by reduction to a lower oxidation state. The Th/Sc ratio of the sediments from Sites 798 and 799 tended to decrease with penetration depth. Such a depth profile may indicate a decrease in basic volcanism activities from the Pliocene (Site 798) and Miocene (Site 799). The La/Yb ratio and degree of europium anomaly also varied with depth, which may imply that two or more components with different REE patterns were supplied throughout sedimentation at sites in the Japan Sea.
Resumo:
Micro-crystalline barites recovered by deep-sea drilling from Site 684 on the Peru margin and Site 799 in the Japan Sea are highly enriched in the heavy sulfur isotope relative to seawater ( d34S up to +84?). This isotopic composition is consistent with remobilization of biogenic barite triggered by sulfate reduction, and subsequent reprecipitation as a diagenetic barite front. The high levels of barium sulfate in these deposits (10-50%) cannot be explained by a diffusive transport model in sediments experiencing a constant rate of sedimentation. When sedimentation rates change radically, the barite front will remain at a given depth interval leading to large accumulations of barium sulfate. Such conditions may have generated the barite deposits at Site 799. At Site 684, on the other hand, there is evidence that the barite deposits are a result of the tectonically-driven advection of sulfate-bearing fluids through the sediment column.