1000 resultados para 765-6
Resumo:
Este documento incluye dos trabajos complementarios. En el primero, 'la perspectiva ecológica de la actuación psicopedagógica y la investigación educativa', Juana María Sancho, tras analizar diferentes modelos de intervención psicopedagógica en el aula, defiende, como punto de partida de una intervención diferente, el estudio ecológico de los problemas educativos. Al trabajar así, el psicopedagog@, por una parte se aleja de un modelo médico de intervención, y define un nuevo marco de relaciones donde profesor y psicopedagog@ son investigadores de una acción educativa que se desarrolla en un contexto ecológico único y complejo. El segundo trabajo, coordinado por Ginés García Vilar es una ejemplificación del trabajo anterior.
Resumo:
In the title compound, C11H8N6O4S, the plane of the coumarin aromatic ring is twisted by 17.2 (2)degrees with respect to the plane of the azide group bound to the methylene substituent, whereas it is twisted by 83.2 (2)degrees to the plane of the azide attached to the sulfonyl group. The crystal structure is stabilized by weak C-H center dot center dot center dot O interactions, leading to the formation of dimers with R-2(2)(12) graph-set motifs. These dimers are further linked by weak S-O center dot center dot center dot pi and pi-pi contacts centroid-centroid distance = 3.765 (2) angstrom], leading to the formation of a layered structure.
Resumo:
经过铝粉加热活化的AlCl_3与SmCl_3在苯中反应,得到了Sm(η~6—C_6H_6)(AlCl_4)_3·C_6H_6单晶.其晶体属于三斜晶系,P1空间群,晶胞参数a=9.456(2)(?),b=9.765(3)(?),c=16.776(4)(?),α=96.00(2)°,β=93.76(2)°,γ=111.66(2)°,V=1422.55(?)~3,Z=2.晶体结构是采用Patterson和Fourier合成法解出的,所有非氢原子的坐标及各向异性热振动参数经块矩阵最小二乘法修正,最后偏离因子R=0.031,R_ω=0.035.分子结构中,中心离子Sm(Ⅲ)与六个Cl原子及一个苯环上的六个C原子成键.Sm-C键平均距离2.92(?),Sm-Cl平均距离2.83(?).与希土相连的六个Cl原子,其中之五构成平面五边形,整个分子呈大致的五角双锥形.
Resumo:
In this paper, niobium doping is evaluated as a means of enhancing the electrochemical performance of a Sr2Fe1.5Mo0.5O6-δ (SFM) perovskite structure cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs) applications. As the radius of Nb approximates that of Mo and exhibits +4/+5 mixed valences, its substitution is expected to improve material performance. A series of Sr2Fe1.5Mo0.5-xNbxO6-δ (x = 0.05, 0.10, 0.15, 0.20) cathode materials are prepared and the phase structure, chemical compatibility, microstructure, electrical conductivity, polarization resistance and power generation are systematically characterized. Among the series of samples, Sr2Fe1.5Mo0.4Nb0.10O6-δ (SFMNb0.10) exhibits the highest conductivity value of 30 S cm-1 at 550°C, and the lowest area specific resistance of 0.068 Ω cm2 at 800°C. Furthermore, an anode-supported single cell incorporating a SFMNb0.10 cathode presents a maximum power density of 1102 mW cm-2 at 800°C. Furthermore no obvious performance degradation is observed over 15 h at 750°C with wet H2(3% H2O) as fuel and ambient air as the oxidant. These results demonstrate that SFMNb shows great promise as a novel cathode material for IT-SOFCs.
Resumo:
The sediments of the Argo and Gascoyne abyssal plains are generally lean in organic matter, are immature, and contain hydrocarbons trapped during sediment deposition rather than those generated during sediment catagenesis. TOC concentrations in the Argo Abyssal Plain Cenozoic sediments are 0.5 wt%, and organic matter appears to be from mixed marine and reworked, degraded, organic matter sources, with the latter being contributed by turbidity flows from the nearby continental margin. TOC concentrations within the Cenozoic sediments of the Gascoyne Abyssal Plain are mostly undetectable (<0.1 wt%). Biomarker distributions determined by gas chromatography (GC) and gas chromatography-mass spectrometry (GCMS) indicate that organic matter extracted from the Lower Cretaceous sediments from both sites is predominantly marine with varying contributions from terrestrial organic matter. The specific marine biomarker, 24-n-propylcholestane is in relatively high abundance in all samples. In addition, the relatively high abundance of the 4-methylsteranes with the 23,24-dimethyl side chain (in all samples) indicates significant dinoflagellate contributions and marine organic matter. The ratios of n-C27/n-C17 reflect relative contributions of marine vs. terrestrial organic matter. TOC, while generally low at Argo, is relatively high near the Barremian/Aptian boundary (one sample has a TOC of 5.1 wt%) and the Aptian/Albian boundary (up to 1.3 wt% TOC), and two samples from the Barremian and Aptian sections contain relatively high proportions of terrestrial organic carbon. TOC values in the Lower Cretaceous sediments from Gascoyne Abyssal Plain are low (<0.1 wt%) near the Aptian/Barremian boundary. TOC values are higher in older sediments, with maxima in the upper Barremian (1.02 wt%), the Barremian/Hauterivian (0.6 wt%), and Valanginian (1.8 wt%). Sediments from the upper Barremian contain higher amounts of terrestrial organic carbon than older sediments.
Resumo:
During Ocean Drilling Program Leg 123, two sites were drilled in the deep Indian Ocean. Physical properties were measured in soft Quaternary and Lower Cretaceous sediments to relatively fresh, glass-bearing pillow lavas and massive basalts. Porosities ranged from 89% near the seafloor to 1.6% for the dense basalts. This self-consistent set of measurements permitted some descriptive models of physical properties to be more rigorously tested than before. Predictive relationships between porosity and compressional-wave velocity have generally been based upon the Wyllie time average equation. However, this equation does not adequately describe the actual relationship between these two parameters, and many have attempted to improve it. In most cases, models were derived by testing them against a set of data representing a relatively narrow range of porosity values. Similarly, the use of the Wyllie equation has often been justified by a pseudolinear fit to the data over a narrow range of porosity values. The limitations of the Wyllie relationship have been re-emphasized here. A semi-empirical acoustic impedance equation is developed that provides a more accurate porosity-velocity transform, using realistic material parameters, than has hitherto been possible. A closer correlation can be achieved with this semi-empirical relationship than with more theoretically based equations. In addition, a satisfactory empirical equation can be used to describe the relationship between thermal conductivity and porosity. If enough is known about core sample lithologies to provide estimates of the matrix and pore water parameters, then these predictive equations enable one to describe completely the behavior of a saturated rock core in terms of compressional-wave velocity, thermal conductivity, porosity, and bulk density.